Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zeitlupe für Biomoleküle

05.12.2014

Forscher nutzen Röntgenlaser als ultraschnelle Kamera für den Nanokosmos

Mit dem weltstärksten Röntgenlaser hat ein internationales Forscherteam unter Beteiligung von DESY ein lichtempfindliches Biomolekül bei der Arbeit beobachtet. Die Arbeit belegt, dass Röntgenlaser mit ihren extrem kurzen Blitzen die schnelle Dynamik von Biomolekülen in einer Art Ultra-Zeitlupe festhalten können.


Die PYP-Struktur ändert sich unter dem Einfluss von Licht, wobei sich die Elektronendichte von den roten Regionen (Grundzustand) zu den blauen Regionen (angeregter Zustand) bewegt.

Bild: Marius Schmidt/University of Wisconsin-Milwaukee

Die Gruppe um Prof. Marius Schmidt von der Universität von Wisconsin in Milwaukee stellt ihre Studie im Fachblatt „Science" vor. „Unsere Studie ebnet den Weg für Filme aus der Nanowelt mit atomarer räumlicher und ultraschneller zeitlicher Auflösung", betont Schmidt.

Die Wissenschaftler hatten für ihre Untersuchungen das sogenannte photoaktive gelbe Protein (photoactive yellow protein, PYP) als Modellsystem benutzt. PYP ist ein Rezeptor für blaues Licht und Teil der Photosynthese-Maschinerie in bestimmten Bakterien.

Sobald es ein blaues Lichtteilchen (Photon) einfängt, durchläuft es einen sogenannten Photozyklus, während es die Energie des Photons erntet. Schließlich kehrt es in seinen Ausgangszustand zurück. Die meisten Schritte des PYP-Photozyklus sind gut untersucht, was das Molekül zu einem exzellenten Kandidaten macht, um neue Untersuchungsmethoden an ihm zu überprüfen.

Für ihre ultraschnellen Schnappschüsse der PYP-Dynamik produzierten die Wissenschaftler zunächst winzige Kristalle mit weniger als 0,01 Millimetern Durchmesser aus PYP-Proteinen. Diese Kristalle streuen das Licht der Röntgenblitze auf charakteristische Weise, und aus dem resultierenden Streubild lässt sich die Struktur der PYP-Moleküle berechnen.

Die Mikrokristalle sprühten die Forscher in den Strahl des derzeit stärksten Röntgenlasers der Welt, der Linac Coherent Light Source LCLS am US-Beschleunigerzentrum SLAC in Kalifornien. Ein extrem genau synchronisierter blauer Laser löste dabei den Beginn des Photozyklus aus, bevor die Kristalle von einem Röntgenblitz getroffen wurden. Dank der ultra-kurzen und -hellen LCLS-Röntgenblitze konnten die Wissenschaftler beobachten, wie das PYP im Verlauf des Photozyklus seine Form ändert.

Mit einer Auflösung von 0,16 Nanometern sind diese Bilder die detailliertesten, die bisher mit einem Röntgenlaser von einem Biomolekül aufgenommen worden sind. Ein Nanometer ist ein millionstel Millimeter. Zum Vergleich: Der Durchmesser des kleinsten Atoms, Wasserstoff, beträgt etwa 0,1 Nanometer.

Die Messung konnte nicht nur die bereits bekannten Abläufe des PYP-Photozyklus reproduzieren und damit zeigen, dass die neue Technik funktioniert. Sie zeigt den Ablauf auch in feinerem Detail als frühere Untersuchungen. Dank der hohen zeitlichen Auflösung kann der Röntgenlaser außerdem ultraschnelle Schritte im PYP-Zyklus untersuchen, die kürzer als eine Pikosekunde (eine billionstel Sekunde) sind und damit zu schnell für bisherige Techniken. Solche ultraschnellen Schnappschüsse lassen sich zu einem Film anordnen, der die Moleküldynamik in Ultra-Zeitlupe zeigt.

"Das ist ein echter Durchbruch", betont Ko-Autor Prof. Henry Chapman vom Center for Free-Electron Laser Science bei DESY, der auch Mitglied im Hamburg Centre for Ultrafast Imaging ist. „Unsere Arbeit öffnet die Tür zu zeitaufgelösten Untersuchungen dynamischer Prozesse mit atomarer Auflösung."

Verglichen mit anderen Methoden bieten Röntgenlaser wie die LCLS oder der European XFEL, der zurzeit vom Hamburger DESY-Campus bis ins benachbarte Schenefeld gebaut wird, verschiedene Vorteile für die Untersuchung der ultraschnellen Dynamik von Molekülen. Sie produzieren die brillantesten Röntgenblitze der Welt, mit denen sich eine Zeitauflösung im Femtosekundenbereich erreichen lässt. Eine Femtosekunde ist eine billiardstel Sekunde. Bei dieser Studie wurden Pulse von nur etwa 40 Femtosekunden Länge verwendet, und die Blitze lassen sich sogar noch weiter verkürzen, so dass eine Zeitauflösung im Bereich von wenigen Femtosekunden möglich wird.

„Man braucht einen sehr kurzen Blitz, um die einzelnen Schritte dieser schnellen Prozesse erkennen zu können", unterstreicht Ko-Autor und DESY-Forscher Dr. Anton Barty. „Die kurzen Blitze umgehen auch das Problem, dass die meist empfindlichen Proben vom intensiven Röntgenlicht geschädigt werden." Zwar vaporisieren die starken Pulse normalerweise die Proben, aber die Blitze sind so kurz, dass die Probe sich erst auflöst, wenn das Röntgenlicht sie bereits passiert hat. So entsteht ein Streubild hoher Qualität von der intakten Probe auf dem Detektor. Eine internationale Gruppe unter Leitung von DESY hatte erst vor wenigen Jahren gezeigt, dass dieses Prinzip namens „Diffraction before Destruction" (Beugung vor Zerstörung) tatsächlich funktioniert.

Röntgenlaser nutzen für jeden Schuss eine frische Probe, so dass sich keine Strahlenschäden in den Proben ansammeln wie es bei manchen anderen Untersuchungen der Fall sein kann. Außerdem untersuchen Röntgenlaser üblicherweise sehr kleine Kristalle, die meist viel einfacher herzustellen sind als große Kristalle. Manche Biomoleküle sind so schwer zu kristallisieren, dass sie überhaupt nur mit einem Röntgenlaser untersucht werden können. Die kleinen Kristalle sind darüber hinaus von Vorteil, wenn es - wie bei der PYP-Untersuchung - darum geht, denselben dynamischen Prozess möglichst in allen Molekülen des Kristalls anzustoßen. In größeren Proben wird der auslösende Laserpuls oft so stark absorbiert, dass er nur eine dünne obere Molekülschicht anregt und die hinteren Bereiche des Kristalls gar nicht mehr erreicht.

Die Forscher hatten die Größe der PYP-Kristalle in dieser Untersuchung so gewählt, dass der blaue Laser bei allen Molekülen in einem Kristall zusammen dieselbe Dynamik auslöst. Da die Röntgen-Streubilder ebenfalls von allen Molekülen zusammen erzeugt werden, lassen sich auf diese Weise feinere Details von molekularen Strukturänderungen erkennen, weil alle Moleküle sich jeweils in demselben Zustand befinden.

Zusammengenommen versprechen Röntgenlaser neue, bislang unerreichbare Einblicke in die Dynamik der molekularen Welt, indem sie andere Untersuchungsmethoden ergänzen. So wollen die Forscher mit dieser Ultra-Zeitlupe als nächstes diejenigen Schritte im PYP-Photozyklus aufklären, die zu schnell für bisherige Untersuchungsmethoden sind.

An der Untersuchung waren Forscher der University of Wisconsin-Milwaukee, der Arizona State University, des SLAC National Accelerator Center, des Lawrence Livermore National Laboratory, von DESY, der University of New York Buffalo, der University of Chicago und des Imperial College London beteiligt.

Das Deutsche Elektronen-Synchrotron DESY ist das führende deutsche Beschleunigerzentrum und eines der führenden weltweit. DESY ist Mitglied der Helmholtz-Gemeinschaft und wird zu 90 Prozent vom BMBF und zu 10 Prozent von den Ländern Hamburg und Brandenburg finanziert. An seinen Standorten in Hamburg und Zeuthen bei Berlin entwickelt, baut und betreibt DESY große Teilchenbeschleuniger und erforscht damit die Struktur der Materie. Die Kombination von Forschung mit Photonen und Teilchenphysik bei DESY ist einmalig in Europa.

Originalveröffentlichung
„Time-resolved serial crystallography captures high-resolution intermediates of photoactive yellow protein", Jason Tenboer et al., Science (2014), DOI: 10.1126/science.1259357

Dr. Thomas Zoufal | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neue Einblicke in die Welt der Trypanosomen
16.08.2017 | Julius-Maximilians-Universität Würzburg

nachricht Geographie verrät das Alter von Viren
16.08.2017 | Universität Bern

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Wissenschaftler beleuchten den „anderen Hochtemperatur-Supraleiter“

Eine von Wissenschaftlern des Max-Planck-Instituts für Struktur und Dynamik der Materie (MPSD) geleitete Studie zeigt, dass Supraleitung und Ladungsdichtewellen in Verbindungen der wenig untersuchten Familie der Bismutate koexistieren können.

Diese Beobachtung eröffnet neue Perspektiven für ein vertieftes Verständnis des Phänomens der Hochtemperatur-Supraleitung, ein Thema, welches die Forschung der...

Im Focus: Tests der Quantenmechanik mit massiven Teilchen

Quantenmechanische Teilchen können sich wie Wellen verhalten und mehrere Wege gleichzeitig nehmen, um an ihr Ziel zu gelangen. Dieses Prinzip basiert auf Borns Regel, einem Grundpfeiler der Quantenmechanik; eine mögliche Abweichung hätte weitreichende Folgen und könnte ein Indikator für neue Phänomene in der Physik sein. WissenschafterInnen der Universität Wien und Tel Aviv haben nun diese Regel explizit mit Materiewellen überprüft, indem sie massive Teilchen an einer Kombination aus Einzel-, Doppel- und Dreifachspalten interferierten. Die Analyse bestätigt den Formalismus der etablierten Quantenmechanik und wurde im Journal "Science Advances" publiziert.

Die Quantenmechanik beschreibt sehr erfolgreich das Verhalten von Partikeln auf den kleinsten Masse- und Längenskalen. Die offensichtliche Unvereinbarkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

Anbausysteme im Wandel: Europäische Ackerbaubetriebe müssen sich anpassen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Neue Einblicke in die Welt der Trypanosomen

16.08.2017 | Biowissenschaften Chemie

Maschinensteuerung an Anwender: Intelligentes System für mobile Endgeräte in der Fertigung

16.08.2017 | Informationstechnologie

Komfortable Software für die Genomanalyse

16.08.2017 | Informationstechnologie