Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zeitliche Struktur von Nervensignalen unterstützt präzise Navigation im Raum

03.04.2012
Bei der räumlichen Navigation spielt das Timing von Nervenimpulsen eine besondere Rolle.

Dies konnten nun Forscher an den Bernstein Zentren der HU Berlin und der LMU München zeigen. Im Zentrum der Untersuchungen standen Gitterzellen im Gehirn von Nagetieren. Die erst vor kurzem entdeckten Nervenzellen sind aktiv, wenn das Tier bestimmte Bereiche seiner Umgebung durchquert.


Bewegung (schwarze Linie) einer Ratte in einer kreisförmigen Umgebung, zusammen mit den Bereichen, an denen eine bestimmte Gitterzelle aktiv war (rote Punkte). Diese Bereiche bilden ein hexagonales Gitter. © Eric Reifenstein/ HU Berlin

Diese Bereiche bilden ein Gitter mit Sechseck-Struktur. Anders als bisher betrachteten die Wissenschaftler die Nervenimpulse in einzelnen Läufen des Versuchstieres und konnten damit nachweisen, dass das zeitliche Muster der neuronalen Entladungen vom Tier für die Steuerung seines Verhaltens verwendet werden kann.

Die neurobiologischen Grundlagen der räumlichen Orientierungsfähigkeit des Menschen untersuchen Forscher seit langem stellvertretend an Mäusen und Ratten. Vor wenigen Jahren wurden hierbei sogenannte „Gitterzellen“ entdeckt, die dann aktiv sind, wenn sich das Tier durch bestimmte Bereiche seiner Umgebung bewegt, die zusammen ein imaginäres Gitter mit hexagonaler Symmetrie bilden . Bisher ging man meist davon aus, dass das Gehirn räumliche Information aus dem zeitlichen Verlauf der mittleren Aktivität dieser Zellen berechnet, da man glaubte, dass einzelne Nervenimpulse zu ungenau seien.
Wissenschaftler an den Bernstein Zentren der Humboldt-Universität zu Berlin und Ludwig-Maximilians-Universität München haben nun aber das Gegenteil gezeigt: betrachtet man die zeitliche Abfolge der Nervenimpulse von Gitterzellen, so kann man den Aufenthaltsort des Tieres doppelt so genau vorhersagen wie durch die Anzahl der Nervenimpulse. Das zeitliche Entladungsmuster ist bereits in den einzelnen Läufen der Tiere deutlich ausgeprägt. „Präzise zeitliche Information steht also für die Steuerung von Verhalten zur Verfügung“, erklärt der Neurowissenschaftler und Leiter der Studie, Prof. Andreas Herz.

Seit ihrer Entdeckung im Jahr 2004 durch die Gruppe von Prof. Edvard Moser (Trondheim) ziehen Gitterzellen viele Forscher in ihren Bann. Neben der faszinierenden Eigenschaft, geometrische Bezüge des Außenraums in ihrem mittleren Aktivitätsmuster abzubilden, scheinen diese Zellen auch interessante zeitliche Aktivitätsstrukturen relativ zur großräumigen EEG-Schwingung im betreffenden Gehirnareal aufzuweisen: Bewegt sich das Tier auf einen der imaginären Gitterpunkte einer Nervenzelle zu, so ist diese Zelle zuerst gegen Ende einer EEG-Periode aktiv. Im Verlauf der Bewegung verschieben sich die Zeitpunkte der Nervenimpulse dann tendenziell zu immer früheren Phasen der EEG-Schwingung, so dass sich insgesamt eine systematische Veränderung zwischen der Aktivität der Gitterzelle und dem großräumigen EEG-Rhythmus ergibt .

Dieses Phänomen war bislang jedoch nur als über viele Versuchsdurchläufe gemitteltes Resultat nachgewiesen, was Zweifel an seiner biologischen Relevanz zuließ. Die neue Untersuchung zeigt nun erstmals, dass die zeitliche Verschiebung der Nervenimpulse einer Gitterzelle schon in einzelnen Versuchsdurchläufen sichtbar ist – die Verschiebung ist sogar stärker als bei den über mehrere Läufe gemittelten Daten. Dieses Ergebnis unterstützt die Sichtweise, dass es in vielen Bereichen des Gehirns auf feine zeitliche Bezüge zwischen den Entladungen von Nervenzellen ankommt und nicht nur darauf, ob die Zellen stärker oder weniger aktiv sind. Selbst bei identischer Entladungsrate kann eine Nervenzelle damit viele unterschiedliche Signale verschlüsseln, was ihre Kapazität zur Informationsverarbeitung deutlich erhöht. Die Arbeit von Reifenstein et al. zeigt damit auch, dass die Leistungsfähigkeit des Gehirns noch größer ist als bisher vermutet.

Für ihre Studie werteten die Wissenschaftler die Daten früherer Arbeiten aus dem Labor von Prof. Moser neu aus. Einem modernen Trend in den Neurowissenschaften folgend, sind die Daten dieser Gruppe im Internet frei verfügbar, so dass kein einziger weiterer Tierversuch notwendig war.
Die Bernstein Zentren Berlin und München sind Teil des Nationalen Bernstein Netzwerks Computational Neuroscience (NNCN). Das NNCN wurde vom BMBF mit dem Ziel gegründet, die Kapazitäten im Bereich der neuen Forschungsdisziplin Computational Neuroscience zu bündeln, zu vernetzen und weiterzuentwickeln. Das Netzwerk ist benannt nach dem deutschen Physiologen Julius Bernstein (1835-1917).

Original-Publikation:
Reifenstein E T, Kempter R, Schreiber S, Stemmler M B, Herz A V M (2012): Grid Cells in Rat Entorhinal Cortex Encode Physical Space with Independent Firing Fields and Phase Precession at the Single-Trial Level. PNAS, doi: 10.1073/pnas.1109599109

Weitere Informationen erteilt Ihnen gerne:

Prof. Dr. Andreas V. M. Herz
Department Biologie II
Ludwig-Maximilians-Universität München
und Bernstein Zentrum für Computational Neuroscience München
Grosshadernerstr. 2
82152 Planegg-Martinsried
Tel: 0049-89-2180-74801
email: herz@bio.lmu.de

Johannes Faber | idw
Weitere Informationen:
http://www.bccn-muenchen.de/
http://www.bccn-berlin.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Kaltes Wasser: Und es bewegt sich doch!
27.06.2017 | Universität Innsbruck

nachricht Was Stammzellen zu perfekten Alleskönnern macht
27.06.2017 | Universität Zürich

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Future Security Conference 2017 in Nürnberg - Call for Papers bis 31. Juli

26.06.2017 | Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Digital Mobility“– 48 Mio. Euro für die Entwicklung des digitalen Fahrzeuges

26.06.2017 | Förderungen Preise

Fahrerlose Transportfahrzeuge reagieren bald automatisch auf Störungen

26.06.2017 | Verkehr Logistik

Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit

26.06.2017 | Physik Astronomie