Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zebrafische jagen punktgenau

12.12.2014

Beute wird bereits von den Zellen der Zebrafisch-Netzhaut erkannt

Sehen – erkennen – handeln. Diese drei Worte beschreiben, wie ein Sinneseindruck zu einer gezielten Bewegung führen kann. Wie und wo das Gehirn äußere Eindrücke in Verhaltensantworten umwandelt, ist jedoch größtenteils unbekannt.


Wenn eine Zebrafischlarve ein Beuteobjekt sieht, wird diese Information an Nervenzellen (blau) in der AF7-Hirnregion weitergeleitet. MPI f. Neurobiologie/ Semmelhack

Nun konnten Wissenschaftler des Max-Planck-Instituts für Neurobiologie in Martinsried bei München wichtige Schaltkreis-Stationen des Beutefangverhaltens junger Zebrafische aufklären. Die Ergebnisse zeigen, dass bereits die Nervenzellen der Augen-Netzhaut Beuteobjekte aus anderen Umweltsignalen herausfiltern. Die Zellen geben diese Informationen dann an eine Hirnregion mit bislang unbekannter Aufgabe weiter. Hier werden dann die entsprechenden Schwimmbewegungen eingeleitet.

Einen Ball zu fangen ist nicht leicht. Der Ball muss erkannt und mit den Augen verfolgt werden. Gleichzeitig müssen die eigenen Bewegungen so koordiniert werden, dass die Hände den Ball zur richtigen Zeit und am richtigen Ort festhalten.

Für Tiere ist solch eine Koordination von visuellen Eindrücken und eigenen Bewegungen überlebenswichtig: Nur so können sie Beute erkennen, verfolgen und fangen. Bei vielen Tieren ist das grundlegende Beutefangverhalten daher angeboren. Wie und wo das Gehirn ein Objekt erkennt, klassifiziert und die entsprechenden Bewegungsmuster einleitet, war bislang ungeklärt.

Beute lässt das Fischgehirn aufleuchten

Zebrafischlarven können bereits direkt nach ihrem Schlüpfen kleine Einzeller wie Pantoffeltierchen jagen. Das Gehirn der Fischchen ist in der Lage die Einzeller als Ziel zu erkennen, die Entfernung zu berechnen und den Körper mit charakteristischen Schwanzbewegungen zu seiner Beute zu lenken. Dieses angeborene Beutefangverhalten kann im Labor auch durch kleine, sich bewegende Punkte ausgelöst werden.

So können Wissenschaftler potentielle "Beute" auf einem Miniaturbildschirm präsentieren und die darauf folgenden Vorgänge im Fischgehirn untersuchen – denn Zebrafischlarven sind fast durchsichtig. Durch genetische Modifikationen leuchten im transparenten Gehirn der Fische die Nervenzellen auf, die gerade aktiv sind. Vorgänge im Fischgehirn können so durch ein Mikroskop beobachtet werden, während die Tiere Beute erkennen, klassifizieren und auf sie zuschwimmen.

Um die neuronalen Schaltkreise des Beutefangverhaltens zu verstehen, konzentrierten sich die Neurobiologen zunächst auf das Erkennen von Beuteobjekten. "Als erstes haben wir uns die Verbindungen der Netzhaut mit dem Gehirn angesehen", beschreibt Julia Semmelhack ihre Arbeit. Nervenzellen der Zebrafischnetzhaut münden in zehn sogenannten AF-Regionen im Gehirn.

Welche Aufgabe diese Regionen haben, ist jedoch weitgehend unbekannt. Nun konnten die Martinsrieder Wissenschaftler zeigen, dass die Nervenzellen in einer dieser zehn AF-Regionen immer dann aktiv wurden, wenn die gezeigten Punkte in das optimale Beuteschema der Fische passten. Größere oder kleinere Punkte hatten keinen Effekt. Nur bei virtuellen Punkten in der "richtigen" Größe (und bei echten Pantoffeltierchen) leuchtete die AF7 Hirnregion auf.

Eine Hirnregion gibt sich zu erkennen

Die weiteren Untersuchungen zeigten, dass bereits die Nervenzellen der Netzhaut potentielle Beuteobjekte aus der Umgebung herausfiltern. Nur wenn ein Punkt "passt", wird die Information an die AF7-Region weitergegeben. Von dort wird dann der Jagdimpuls in andere Sehregionen und in die bewegungssteuernden Areale weitergeleitet. Als die Wissenschaftler die AF7-Verbindungen kappten, reagierten die Fische nur noch sehr eingeschränkt auf Beutepunkte.

Die AF7-Region ist somit essentiell, um visuelle Reize als Beute einzuordnen und ein entsprechendes Jagdverhalten auszulösen. "Wir haben gezeigt, wie ein optischer Eindruck von der Netzhaut über die AF7-Region zu einem bestimmten Verhalten führt", freut sich Herwig Baier, der mit seiner Abteilung am Max-Planck-Institut für Neurobiologie untersucht, wie Sinneseindrücke vom Gehirn in Verhaltensantworten umgewandelt werden. Ein erster, großer Schritt ist gemacht. Als nächstes wollen die Neurobiologen herausfinden, wie die Informationen der AF7-Region in die verschiedenen Schwimmbewegungen übersetzt werden.

Originalpublikation:
Julia Semmelhack, Joseph Donovan, Tod Thiele, Enrico Kuehn, Eva Laurell, Herwig Baier
A dedicated visual channel for prey detection in larval zebrafish
eLife, 9. Dezember 2014

Ansprechpartner:
Prof. Dr. Herwig Baier
Max-Planck-Institut für Neurobiologie, Martinsried
Telefon:+49 89 8578-3200
E-Mail:hbaier@neuro.mpg.de

Dr. Stefanie Merker
Max-Planck-Institut für Neurobiologie, Martinsried
Telefon:+49 89 8578-3514
E-Mail:merker@neuro.mpg.de

Dr Harald Rösch | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.
Weitere Informationen:
http://www.neuro.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht
18.10.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Pflanzen können drei Eltern haben
18.10.2017 | Universität Bremen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mobilität 4.0: Konferenz an der Jacobs University

18.10.2017 | Veranstaltungen

Smart MES 2017: die Fertigung der Zukunft

18.10.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2017

17.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

18.10.2017 | Biowissenschaften Chemie

Biokunststoffe könnten auch in Traktoren die Richtung angeben

18.10.2017 | Messenachrichten

»ILIGHTS«-Studie gestartet: Licht soll Wohlbefinden von Schichtarbeitern verbessern

18.10.2017 | Energie und Elektrotechnik