Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zebrafische jagen punktgenau

12.12.2014

Beute wird bereits von den Zellen der Zebrafisch-Netzhaut erkannt

Sehen – erkennen – handeln. Diese drei Worte beschreiben, wie ein Sinneseindruck zu einer gezielten Bewegung führen kann. Wie und wo das Gehirn äußere Eindrücke in Verhaltensantworten umwandelt, ist jedoch größtenteils unbekannt.


Wenn eine Zebrafischlarve ein Beuteobjekt sieht, wird diese Information an Nervenzellen (blau) in der AF7-Hirnregion weitergeleitet. MPI f. Neurobiologie/ Semmelhack

Nun konnten Wissenschaftler des Max-Planck-Instituts für Neurobiologie in Martinsried bei München wichtige Schaltkreis-Stationen des Beutefangverhaltens junger Zebrafische aufklären. Die Ergebnisse zeigen, dass bereits die Nervenzellen der Augen-Netzhaut Beuteobjekte aus anderen Umweltsignalen herausfiltern. Die Zellen geben diese Informationen dann an eine Hirnregion mit bislang unbekannter Aufgabe weiter. Hier werden dann die entsprechenden Schwimmbewegungen eingeleitet.

Einen Ball zu fangen ist nicht leicht. Der Ball muss erkannt und mit den Augen verfolgt werden. Gleichzeitig müssen die eigenen Bewegungen so koordiniert werden, dass die Hände den Ball zur richtigen Zeit und am richtigen Ort festhalten.

Für Tiere ist solch eine Koordination von visuellen Eindrücken und eigenen Bewegungen überlebenswichtig: Nur so können sie Beute erkennen, verfolgen und fangen. Bei vielen Tieren ist das grundlegende Beutefangverhalten daher angeboren. Wie und wo das Gehirn ein Objekt erkennt, klassifiziert und die entsprechenden Bewegungsmuster einleitet, war bislang ungeklärt.

Beute lässt das Fischgehirn aufleuchten

Zebrafischlarven können bereits direkt nach ihrem Schlüpfen kleine Einzeller wie Pantoffeltierchen jagen. Das Gehirn der Fischchen ist in der Lage die Einzeller als Ziel zu erkennen, die Entfernung zu berechnen und den Körper mit charakteristischen Schwanzbewegungen zu seiner Beute zu lenken. Dieses angeborene Beutefangverhalten kann im Labor auch durch kleine, sich bewegende Punkte ausgelöst werden.

So können Wissenschaftler potentielle "Beute" auf einem Miniaturbildschirm präsentieren und die darauf folgenden Vorgänge im Fischgehirn untersuchen – denn Zebrafischlarven sind fast durchsichtig. Durch genetische Modifikationen leuchten im transparenten Gehirn der Fische die Nervenzellen auf, die gerade aktiv sind. Vorgänge im Fischgehirn können so durch ein Mikroskop beobachtet werden, während die Tiere Beute erkennen, klassifizieren und auf sie zuschwimmen.

Um die neuronalen Schaltkreise des Beutefangverhaltens zu verstehen, konzentrierten sich die Neurobiologen zunächst auf das Erkennen von Beuteobjekten. "Als erstes haben wir uns die Verbindungen der Netzhaut mit dem Gehirn angesehen", beschreibt Julia Semmelhack ihre Arbeit. Nervenzellen der Zebrafischnetzhaut münden in zehn sogenannten AF-Regionen im Gehirn.

Welche Aufgabe diese Regionen haben, ist jedoch weitgehend unbekannt. Nun konnten die Martinsrieder Wissenschaftler zeigen, dass die Nervenzellen in einer dieser zehn AF-Regionen immer dann aktiv wurden, wenn die gezeigten Punkte in das optimale Beuteschema der Fische passten. Größere oder kleinere Punkte hatten keinen Effekt. Nur bei virtuellen Punkten in der "richtigen" Größe (und bei echten Pantoffeltierchen) leuchtete die AF7 Hirnregion auf.

Eine Hirnregion gibt sich zu erkennen

Die weiteren Untersuchungen zeigten, dass bereits die Nervenzellen der Netzhaut potentielle Beuteobjekte aus der Umgebung herausfiltern. Nur wenn ein Punkt "passt", wird die Information an die AF7-Region weitergegeben. Von dort wird dann der Jagdimpuls in andere Sehregionen und in die bewegungssteuernden Areale weitergeleitet. Als die Wissenschaftler die AF7-Verbindungen kappten, reagierten die Fische nur noch sehr eingeschränkt auf Beutepunkte.

Die AF7-Region ist somit essentiell, um visuelle Reize als Beute einzuordnen und ein entsprechendes Jagdverhalten auszulösen. "Wir haben gezeigt, wie ein optischer Eindruck von der Netzhaut über die AF7-Region zu einem bestimmten Verhalten führt", freut sich Herwig Baier, der mit seiner Abteilung am Max-Planck-Institut für Neurobiologie untersucht, wie Sinneseindrücke vom Gehirn in Verhaltensantworten umgewandelt werden. Ein erster, großer Schritt ist gemacht. Als nächstes wollen die Neurobiologen herausfinden, wie die Informationen der AF7-Region in die verschiedenen Schwimmbewegungen übersetzt werden.

Originalpublikation:
Julia Semmelhack, Joseph Donovan, Tod Thiele, Enrico Kuehn, Eva Laurell, Herwig Baier
A dedicated visual channel for prey detection in larval zebrafish
eLife, 9. Dezember 2014

Ansprechpartner:
Prof. Dr. Herwig Baier
Max-Planck-Institut für Neurobiologie, Martinsried
Telefon:+49 89 8578-3200
E-Mail:hbaier@neuro.mpg.de

Dr. Stefanie Merker
Max-Planck-Institut für Neurobiologie, Martinsried
Telefon:+49 89 8578-3514
E-Mail:merker@neuro.mpg.de

Dr Harald Rösch | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.
Weitere Informationen:
http://www.neuro.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Krebsdiagnostik: Pinkeln statt Piksen?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Kugelmühlen statt Lösungsmittel: Nanographene mit Mechanochemie
25.05.2018 | Technische Universität Dresden

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Starke IT-Sicherheit für das Auto der Zukunft – Forschungsverbund entwickelt neue Ansätze

Je mehr die Elektronik Autos lenkt, beschleunigt und bremst, desto wichtiger wird der Schutz vor Cyber-Angriffen. Deshalb erarbeiten 15 Partner aus Industrie und Wissenschaft in den kommenden drei Jahren neue Ansätze für die IT-Sicherheit im selbstfahrenden Auto. Das Verbundvorhaben unter dem Namen „Security For Connected, Autonomous Cars (SecForCARs) wird durch das Bundesministerium für Bildung und Forschung mit 7,2 Millionen Euro gefördert. Infineon leitet das Projekt.

Bereits heute bieten Fahrzeuge vielfältige Kommunikationsschnittstellen und immer mehr automatisierte Fahrfunktionen, wie beispielsweise Abstands- und...

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Mit Hilfe molekularer Schalter lassen sich künftig neuartige Bauelemente entwickeln

Einem Forscherteam unter Führung von Physikern der Technischen Universität München (TUM) ist es gelungen, spezielle Moleküle mit einer angelegten Spannung zwischen zwei strukturell unterschiedlichen Zuständen hin und her zu schalten. Derartige Nano-Schalter könnten Basis für neuartige Bauelemente sein, die auf Silizium basierende Komponenten durch organische Moleküle ersetzen.

Die Entwicklung neuer elektronischer Technologien fordert eine ständige Verkleinerung funktioneller Komponenten. Physikern der TU München ist es im Rahmen...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: GRACE Follow-On erfolgreich gestartet: Das Satelliten-Tandem dokumentiert den globalen Wandel

Die Satellitenmission GRACE-FO ist gestartet. Am 22. Mai um 21.47 Uhr (MESZ) hoben die beiden Satelliten des GFZ und der NASA an Bord einer Falcon-9-Rakete von der Vandenberg Air Force Base (Kalifornien) ab und wurden in eine polare Umlaufbahn gebracht. Dort nehmen sie in den kommenden Monaten ihre endgültige Position ein. Die NASA meldete 30 Minuten später, dass der Kontakt zu den Satelliten in ihrem Zielorbit erfolgreich hergestellt wurde. GRACE Follow-On wird das Erdschwerefeld und dessen räumliche und zeitliche Variationen sehr genau vermessen. Sie ermöglicht damit präzise Aussagen zum globalen Wandel, insbesondere zu Änderungen im Wasserhaushalt, etwa dem Verlust von Eismassen.

Potsdam, 22. Mai 2018: Die deutsch-amerikanische Satellitenmission GRACE-FO (Gravity Recovery And Climate Experiment Follow On) ist erfolgreich gestartet. Am...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Im Fokus: Klimaangepasste Pflanzen

25.05.2018 | Veranstaltungen

Größter Astronomie-Kongress kommt nach Wien

24.05.2018 | Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Berufsausbildung mit Zukunft

25.05.2018 | Unternehmensmeldung

Untersuchung der Zellmembran: Forscher entwickeln Stoff, der wichtigen Membranbestandteil nachahmt

25.05.2018 | Interdisziplinäre Forschung

Starke IT-Sicherheit für das Auto der Zukunft – Forschungsverbund entwickelt neue Ansätze

25.05.2018 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics