Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zebrafische jagen punktgenau

12.12.2014

Beute wird bereits von den Zellen der Zebrafisch-Netzhaut erkannt

Sehen – erkennen – handeln. Diese drei Worte beschreiben, wie ein Sinneseindruck zu einer gezielten Bewegung führen kann. Wie und wo das Gehirn äußere Eindrücke in Verhaltensantworten umwandelt, ist jedoch größtenteils unbekannt.


Wenn eine Zebrafischlarve ein Beuteobjekt sieht, wird diese Information an Nervenzellen (blau) in der AF7-Hirnregion weitergeleitet. MPI f. Neurobiologie/ Semmelhack

Nun konnten Wissenschaftler des Max-Planck-Instituts für Neurobiologie in Martinsried bei München wichtige Schaltkreis-Stationen des Beutefangverhaltens junger Zebrafische aufklären. Die Ergebnisse zeigen, dass bereits die Nervenzellen der Augen-Netzhaut Beuteobjekte aus anderen Umweltsignalen herausfiltern. Die Zellen geben diese Informationen dann an eine Hirnregion mit bislang unbekannter Aufgabe weiter. Hier werden dann die entsprechenden Schwimmbewegungen eingeleitet.

Einen Ball zu fangen ist nicht leicht. Der Ball muss erkannt und mit den Augen verfolgt werden. Gleichzeitig müssen die eigenen Bewegungen so koordiniert werden, dass die Hände den Ball zur richtigen Zeit und am richtigen Ort festhalten.

Für Tiere ist solch eine Koordination von visuellen Eindrücken und eigenen Bewegungen überlebenswichtig: Nur so können sie Beute erkennen, verfolgen und fangen. Bei vielen Tieren ist das grundlegende Beutefangverhalten daher angeboren. Wie und wo das Gehirn ein Objekt erkennt, klassifiziert und die entsprechenden Bewegungsmuster einleitet, war bislang ungeklärt.

Beute lässt das Fischgehirn aufleuchten

Zebrafischlarven können bereits direkt nach ihrem Schlüpfen kleine Einzeller wie Pantoffeltierchen jagen. Das Gehirn der Fischchen ist in der Lage die Einzeller als Ziel zu erkennen, die Entfernung zu berechnen und den Körper mit charakteristischen Schwanzbewegungen zu seiner Beute zu lenken. Dieses angeborene Beutefangverhalten kann im Labor auch durch kleine, sich bewegende Punkte ausgelöst werden.

So können Wissenschaftler potentielle "Beute" auf einem Miniaturbildschirm präsentieren und die darauf folgenden Vorgänge im Fischgehirn untersuchen – denn Zebrafischlarven sind fast durchsichtig. Durch genetische Modifikationen leuchten im transparenten Gehirn der Fische die Nervenzellen auf, die gerade aktiv sind. Vorgänge im Fischgehirn können so durch ein Mikroskop beobachtet werden, während die Tiere Beute erkennen, klassifizieren und auf sie zuschwimmen.

Um die neuronalen Schaltkreise des Beutefangverhaltens zu verstehen, konzentrierten sich die Neurobiologen zunächst auf das Erkennen von Beuteobjekten. "Als erstes haben wir uns die Verbindungen der Netzhaut mit dem Gehirn angesehen", beschreibt Julia Semmelhack ihre Arbeit. Nervenzellen der Zebrafischnetzhaut münden in zehn sogenannten AF-Regionen im Gehirn.

Welche Aufgabe diese Regionen haben, ist jedoch weitgehend unbekannt. Nun konnten die Martinsrieder Wissenschaftler zeigen, dass die Nervenzellen in einer dieser zehn AF-Regionen immer dann aktiv wurden, wenn die gezeigten Punkte in das optimale Beuteschema der Fische passten. Größere oder kleinere Punkte hatten keinen Effekt. Nur bei virtuellen Punkten in der "richtigen" Größe (und bei echten Pantoffeltierchen) leuchtete die AF7 Hirnregion auf.

Eine Hirnregion gibt sich zu erkennen

Die weiteren Untersuchungen zeigten, dass bereits die Nervenzellen der Netzhaut potentielle Beuteobjekte aus der Umgebung herausfiltern. Nur wenn ein Punkt "passt", wird die Information an die AF7-Region weitergegeben. Von dort wird dann der Jagdimpuls in andere Sehregionen und in die bewegungssteuernden Areale weitergeleitet. Als die Wissenschaftler die AF7-Verbindungen kappten, reagierten die Fische nur noch sehr eingeschränkt auf Beutepunkte.

Die AF7-Region ist somit essentiell, um visuelle Reize als Beute einzuordnen und ein entsprechendes Jagdverhalten auszulösen. "Wir haben gezeigt, wie ein optischer Eindruck von der Netzhaut über die AF7-Region zu einem bestimmten Verhalten führt", freut sich Herwig Baier, der mit seiner Abteilung am Max-Planck-Institut für Neurobiologie untersucht, wie Sinneseindrücke vom Gehirn in Verhaltensantworten umgewandelt werden. Ein erster, großer Schritt ist gemacht. Als nächstes wollen die Neurobiologen herausfinden, wie die Informationen der AF7-Region in die verschiedenen Schwimmbewegungen übersetzt werden.

Originalpublikation:
Julia Semmelhack, Joseph Donovan, Tod Thiele, Enrico Kuehn, Eva Laurell, Herwig Baier
A dedicated visual channel for prey detection in larval zebrafish
eLife, 9. Dezember 2014

Ansprechpartner:
Prof. Dr. Herwig Baier
Max-Planck-Institut für Neurobiologie, Martinsried
Telefon:+49 89 8578-3200
E-Mail:hbaier@neuro.mpg.de

Dr. Stefanie Merker
Max-Planck-Institut für Neurobiologie, Martinsried
Telefon:+49 89 8578-3514
E-Mail:merker@neuro.mpg.de

Dr Harald Rösch | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.
Weitere Informationen:
http://www.neuro.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Stammzellen verlassen Blutgefäße in strömungsarmen Zonen des Knochenmarks
17.02.2017 | Max-Planck-Institut für molekulare Biomedizin, Münster

nachricht Der Entropie auf der Spur
17.02.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Durchbruch mit einer Kette aus Goldatomen

Einem internationalen Physikerteam mit Konstanzer Beteiligung gelang im Bereich der Nanophysik ein entscheidender Durchbruch zum besseren Verständnis des Wärmetransportes

Einem internationalen Physikerteam mit Konstanzer Beteiligung gelang im Bereich der Nanophysik ein entscheidender Durchbruch zum besseren Verständnis des...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: Hoch wirksamer Malaria-Impfstoff erfolgreich getestet

Tübinger Wissenschaftler erreichen Impfschutz von bis zu 100 Prozent – Lebendimpfstoff unter kontrollierten Bedingungen eingesetzt

Tübinger Wissenschaftler erreichen Impfschutz von bis zu 100 Prozent – Lebendimpfstoff unter kontrollierten Bedingungen eingesetzt

Im Focus: Sensoren mit Adlerblick

Stuttgarter Forscher stellen extrem leistungsfähiges Linsensystem her

Adleraugen sind extrem scharf und sehen sowohl nach vorne, als auch zur Seite gut – Eigenschaften, die man auch beim autonomen Fahren gerne hätte. Physiker der...

Im Focus: Weltweit genaueste und stabilste transportable optische Uhr

Optische Strontiumuhr der PTB in einem PKW-Anhänger – für geodätische Untersuchungen, weltweite Uhrenvergleiche und schließlich auch eine neue SI-Sekunde

Optische Uhren sind noch genauer als die Cäsium-Atomuhren, die gegenwärtig die Zeit „machen“. Außerdem benötigen sie nur ein Hundertstel der Messdauer, um eine...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

ANIM in Wien mit 1.330 Teilnehmern gestartet

17.02.2017 | Veranstaltungen

Ökologischer Landbau: Experten diskutieren Beitrag zum Grundwasserschutz

17.02.2017 | Veranstaltungen

Von DigiCash bis Bitcoin

16.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Stammzellen verlassen Blutgefäße in strömungsarmen Zonen des Knochenmarks

17.02.2017 | Biowissenschaften Chemie

LODENFREY setzt auf das Workforce Mangement von GFOS

17.02.2017 | Unternehmensmeldung

50 Jahre JULABO : Erfahrung – Können & Weiterentwicklung!

17.02.2017 | Unternehmensmeldung