Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Im Zebrafisch erstmals die Neubildung von Nervenzellen aus Stammzellen aufgeklärt

08.11.2011
Nach Hirntraumata bei Zebrafischen werden verlorengegangene Nervenzellen durch vorhandene neuronale Stammzellen so effizient ersetzt, dass sich größere Gehirnregionen komplett von selbst wiederherstellen.

Obwohl die Regenerationsfähigkeit des Gehirns bei Fischen seit 50 Jahren vermutet wurde, blieben die Herkunft der neugebildeten Nervenzellen und die steuernden Mechanismen bisher ungeklärt. Nun ist es erstmals Dresdner Regenerationsforschern des DFG-Forschungszentrums für Regenerative Therapien Dresden (CRTD) und dem Biotechnologischen Zentrum der TU Dresden (BIOTEC) gelungen, die Quelle der wiederhergestellten Nervenzellen zu identifizieren. (Development 2011, DOI 10.1242/dev.072587).


Regeneration des Zebrafischgehirns: Die Körper der neuronalen Stammzellen (radiale Gliazellen, grün) befinden sich am äußeren Rand des Gehirns. Aus diesen Vorläuferzellen entstehen viele neuen Nervenzellen (gelb), die in der geschädigten linken Hirnhälfte tief in das Verletzungsgebiet in der Mitte einwandern. Der Stichkanal ist 21 Tage nach der Verletzung noch deutlich durch die Ansammlung von Blutzellen (blau) erkennbar. In der rechten gesunden Hirnhälfte hingegen befinden sich die neugebildeten Nervenzellen (gelb) ausschließlich am Rande des Gehirns. Die fadenartigen grünen Strukturen innerhalb des Gehirns sind die langen Fortsätze der radialen Gliazellen. ©CRTD/Kroehne

Schwerwiegende Verletzungen des menschlichen Gehirns beispielsweise durch Traumata führen zu einer massiven Zerstörung von Nervenzellen. Der damit einhergehende Verlust der Gehirnfunktion ist dauerhaft, da eine Neubildung von Nervenzellen in geschädigten Gehirnarealen praktisch nicht stattfindet. Im Gegensatz dazu besitzen andere Wirbeltiere wie Salamander und Fische die Fähigkeit, große Regionen ihres zentralen Nervensystems, zum Beispiel die Netzhaut, das Rückenmark und das Gehirn, auch nach schwerwiegenden Verletzungen wieder zu erneuern. Obwohl diese erstaunliche Selbstheilungsfähigkeit schon seit den frühen sechziger Jahren an Fischen untersucht wurde, konnte bisher nicht geklärt werden, woher die neugebildeten Nervenzellen stammen, die die verlorenen Zellen ersetzen.

„Die bisherigen Forschungen konnten keinen Nachweis für die Nervenzellneubildung aus neuralen Stammzellen nach Verletzungen des Nervensystems bei erwachsenen Zebrafischen erbringen“, berichtet Prof. Dr. rer. nat. Michael Brand, Direktor des DFG-Forschungszentrums für Regenerative Therapien Dresden sowie des Biotechnologischen Zentrums der TU Dresden. Mit seiner Arbeitsgruppe hat er ein neues Modell entwickelt, das das erste Mal wissenschaftlich detailliert nachweist, woher originär die neu nachgebildeten Nervenzellen stammen, die die Regeneration des erwachsenen Zebrafischgehirns ermöglichen. Dafür wurden neuronale Stammzellen und von diesen abstammende neugebildete Nervenzellen genetisch mit Hilfe des sogenannten Cre/loxP-System dauerhaft markiert und dadurch sichtbar gemacht.

Normalerweise teilen sich beim Zebrafisch die neuronalen Vorläufer- oder Stammzellen im Außenbereich des Gehirns. Bei diesem Prozess entstehen neue Nervenzellen, die ausschließlich in diesem Randbereich eingebaut werden. Mit einer Kanüle verletzen die Dresdner nun die Mitte des Zebrafischgehirns. „Dabei werden rund 20 Prozent des Vorderhirns geschädigt“, erläutert Dr. rer. nat. Volker Kroehne die Versuchsreihen der Forschungsgruppe. Diese Verletzung würde ein Säugetier nicht überleben. Kroehne führt weiter aus: „Der Fisch kann die zerstörten Areale durch einen auf neuronalen Stammzellen basierenden Mechanismus wiederherstellen. Diese neuronalen Vorläuferzellen, sogenannte radiale Gliazellen, beschleunigen ihre Zellteilung und erhöhen damit die Produktion von neuen Nervenzellen, die dann in die Mitte des Gehirns wandern und die verlorenen Zellen im Verletzungsgebiet ersetzen.“ Langzeitstudien von mehr als einem Jahr zeigten, dass die regenerierten Nervenzellen permanent im Fischgehirn verbleiben und wahrscheinlich dauerhaft in das neuronale Netzwerk eingebaut werden. Interessanterweise unterscheidet sich der neu entdeckte stammzellbasierte Regenerationsmechanismus grundlegend von dem des Herzens und des Skeletts bei Fischen: Dort entstehen neue Herzmuskel- und Skelettzellen nämlich ausschließlich aus vorhandenen ausgereiften Zellen, die sich in undifferenzierte Entwicklungsstufen zurückbilden und danach mit der Zellteilung beginnen (Dedifferenzierung).

Ein Hauptproblem bei Verletzungen im erwachsenen menschlichen Gehirn ist die Bildung von Narbengewebe, das unter anderem durch Ablagerungen von sternförmigen Gliazellen (Astrozyten) entsteht. Genau diese Verwandten der menschlichen Gliazelle, die radialen Gliazellen, erzeugen im Zebrafisch kein Narbengewebe, sondern neue Nervenzellen. Mit histologischen Methoden haben die Dresdner Regenerationsforscher ebenfalls nachgewiesen, dass im geschädigten Gehirn von Zebrafischen keine Narbenbildung stattfindet.

Die Gehirne von Mensch und Zebrafisch unterscheiden sich zwar oberflächlich betrachtet hinsichtlich Größe und Aussehen, sind aber neuroanatomisch und genetisch eng verwandt, bedingt durch ihre gemeinsame evolutionäre Abstammung. Es ist daher von grundlegender Bedeutung, die Regenerationsfähigkeit der Zebrafische zu verstehen. In den Gehirnen von erwachsenen Fischen entstehen lebenslang neue Nervenzellen, die dauerhaft verlorene Nervenzellen ersetzen können. Das Wissen um die Mechanismen der Regeneration bei Fischen könnte in Zukunft dazu beitragen, neue therapeutische Ansätze zur Förderung der Heilung des menschlichen Gehirns, bei Krankheiten und nach Verletzungen zu entwickeln.

Publikation:
Volker Kroehne, Dorian Freudenreich, Stefan Hans, Jan Kaslin and Michael Brand (2011): Regeneration of the adult zebrafish brain from neurogenic radial glia-type progenitors. Development 138, 4831-4841. DOI 10.1242/dev.072587

DFG-Forschungszentrum für Regenerative Therapien Dresden und Biotechnologisches Zentrum der TU Dresden.

Kontakt für Journalisten:
Birte Urban-Eicheler
Pressesprecherin DFG-Forschungszentrum für Regenerative Therapien Dresden und Biotechnologisches Zentrum der TU Dresden
Tel.: +49 (0)351 463 40347
E-Mail: birte.urban-eicheler@crt-dresden.de
Prof. Dr. rer. nat. Michael Brand
Direktor des DFG-Forschungszentrums für Regenerative Therapien Dresden und Biotechnologischen Zentrums der TU Dresden

E-Mail: michael.brand@crt-dresden.de

Das 2006 gegründete DFG-Forschungszentrum für Regenerative Therapien Dresden (CRTD) der Technischen Universität ist das bisher einzige DFG-Forschungszentrum und Exzellenzcluster in Ostdeutschland. Ziel des CRTD ist es, das Selbstheilungspotential des Körpers zu erforschen und völlig neuartige, regenerative Therapien für bisher unheilbare Krankheiten zu entwickeln. Die Forschungsschwerpunkte des Zentrums konzentrieren sich auf Hämatologie und Immunologie, Diabetes, neurodegenerative Erkrankungen sowie Knochen- und Knorpelersatz. Zurzeit arbeiten sechs Professoren und elf Forschungsgruppenleiter am CRTD, die in einem interdisziplinären Netzwerk von über 80 Mitgliedern sieben verschiedener Institutionen Dresdens eingebunden sind. Zusätzlich unterstützen 18 Partner aus der Wirtschaft das Netzwerk. Dabei erlauben die Synergien im Netzwerk eine schnelle Übertragung von Ergebnissen aus der Grundlagenforschung in klinische Anwendungen.

Das Biotechnologische Zentrum (BIOTEC) wurde 2000 als zentrale wissenschaftliche Einrichtung der Technischen Universität Dresden mit dem Ziel gegründet, modernste Forschungsansätze in der Molekular- und Zellbiologie mit den in Dresden traditionell starken Ingenieurswissenschaften zu verbinden. Innerhalb der TU Dresden nimmt das BIOTEC eine zentrale Position in Forschung und Lehre mit dem Schwerpunkt „Molecular Bioengineering und Regenerative Medizin“ ein. Es trägt damit entscheidend zur Profilierung der TU Dresden im Bereich moderner Biotechnologie und Biomedizin bei. Die Forschungsschwerpunkte der internationalen Arbeitsgruppen bilden die Genomik, die Proteomik, die Biophysik, zelluläre Maschinen, die Molekulargenetik, die Gewebezüchtung und die Bioinformatik.

Birte Urban-Eicheler | idw
Weitere Informationen:
http://www.crt-dresden.de
http://www.crt-dresden.de/press-and-public/press-releases.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wasserbewegung als Hinweis auf den Zustand von Tumoren
19.04.2018 | Gesellschaft Deutscher Chemiker e.V.

nachricht Verbesserte Stabilität von Kunststoff-Leuchtdioden
19.04.2018 | Max-Planck-Institut für Polymerforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Wie schwingt ein Molekül, wenn es berührt wird?

Physiker aus Regensburg, Kanazawa und Kalmar untersuchen Einfluss eines äußeren Kraftfeldes

Physiker der Universität Regensburg (Deutschland), der Kanazawa University (Japan) und der Linnaeus University in Kalmar (Schweden) haben den Einfluss eines...

Im Focus: Basler Forschern gelingt die Züchtung von Knorpel aus Stammzellen

Aus Stammzellen aus dem Knochenmark von Erwachsenen lassen sich stabile Gelenkknorpel herstellen. Diese Zellen können so gesteuert werden, dass sie molekulare Prozesse der embryonalen Entwicklung des Knorpelgewebes durchlaufen, wie Forschende des Departements Biomedizin von Universität und Universitätsspital Basel im Fachmagazin PNAS berichten.

Bestimmte mesenchymale Stamm-/Stromazellen aus dem Knochenmark von Erwachsenen gelten als äusserst viel versprechend für die Regeneration von Skelettgewebe....

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

Stralsunder IT-Sicherheitskonferenz im Mai zum 7. Mal an der Hochschule Stralsund

12.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungsnachrichten

Aus dem Labor auf die Schiene: Forscher des HI-ERN planen Wasserstoffzüge mit LOHC-Technologie

19.04.2018 | Verkehr Logistik

Neuer Wirkmechanismus von Tumortherapeutikum entdeckt

19.04.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics