Wie von Zauberhand geschaffen – Das Wachstum von Silikat-Nanokanälen

Die einzelnen Röhren besitzen nur einen Durchmesser von rund drei Nanometern. Ein Nanometer entspricht einem Millionstel Millimeter. Wissenschaftler des Exzellenzclusters „Nanosystems Initiative Munich“ (NIM) an der Ludwig-Maximilians-Universität (LMU) München haben nun eine Methode entwickelt, mit der sie diesen Strukturen trotz ihrer geringen Größe direkt beim Wachsen zusehen können. Zudem entstanden bisher einmalig große Flächen, die für zahlreiche potenzielle Anwendungen interessant sind, etwa als mit medizinischen Wirkstoffen versehene Implantate. (Nature Nanotechnoloy online 10. Januar 2011)

Die Die Arbeitsgruppen von Professor Christoph Bräuchle und Professor Jens Michaelis – beide Department für Chemie der LMU – setzen für die Untersuchung längliche, fluoreszierende Farbstoffmoleküle ein, die sich der Länge nach in die Nanokanäle einlagern. Durch Polarisationsfluoreszenzmikroskopie mit Hilfe eines speziellen konfokalen Laserscanning-Mikroskops können die Wissenschaftler die Orientierung der Farbstoffmoleküle erkennen und von dieser direkt auf die Ausrichtung der Silikat-Röhren schließen. Die Größe solcher orientierter Bereiche (in den Achsen x,y) und ihre Stapelung (in z) konnte zusätzlich mit einem Rasterkraftmikroskop ermittelt werden.

Besonders interessant ist jedoch, dass die Experimentatoren direkt zusehen konnten, wie schnell sich neue Kanäle bilden und wie sich die Struktur erweitert, sozusagen in Echtzeit. Dabei beobachteten sie, dass Temperatur und Feuchtigkeit großen Einfluss auf das Wachstum ausüben. Während sich beispielsweise bei 35°C innerhalb von Minuten Domänen von einigen Mikrometern Ausmaß bildeten, wuchsen die Strukturen bei 25°C langsam, aber stetig über Stunden, und es entstanden bisher einmalig große Flächen mit bis zu 0,3 Millimetern Länge.

Dank dieser Echtzeit-Methode konnten die Wissenschaftler außerdem die Schritte vom Ausgangszustand, einer sogenannten lamellaren Struktur aus zweidimensionalen Schichten aus Silikat, bis zu den dreidimensional angeordneten Silikat-Nanokanälen in einer sogenannten hexagonalen Struktur beobachten. Dabei erkannten sie, dass diese Umstrukturierung überall dort startet, wo die hexagonale Kanalstruktur auf bereits bestehende lamellare Bereiche trifft, die sich dann schlagartig umwandeln.

Nanokanal-Strukturen in dieser erstmals erreichten Größenordnung sind für zahlreiche potenzielle Anwendungen interessant. So lassen sie sich möglicherweise in der Medizin mit Wirkstoffen versehen als Implantate einsetzen. Ähnlich einem Sieb könnten sie im Labor komplexe Molekülgemische auftrennen oder als Katalysatoren chemische Reaktionen ermöglichen. Durch die Einlagerung bestimmter Moleküle in die Nanokanäle entstehen spezielle optische Effekte, die für den Einsatz in der Nanooptik von Nutzen sind. (NIM)

Publikation:
“Visualization of the self-assembly of silica nanochannels reveals growth mechanism”
Christophe Jung, Peter Schwaderer, Mark Dethlefsen, Ralf Köhn, Jens Michaelis, Christoph Bräuchle

Nature Nanotechology online, 09. Januar 2011

Ansprechpartner:
Prof. Christoph Bräuchle
Department Chemie
Ludwig-Maximilians-Universität München
Tel.: 089-2180-77549
E-Mail: Christoph.Braeuchle@cup.uni-muenchen.de

Media Contact

Luise Dirscherl Uni München

Weitere Informationen:

http://www.uni-muenchen.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer