Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

X-ray laser helps slay parasite that causes sleeping sickness

06.12.2012
An international team of scientists, using the world’s most powerful X-ray laser, has revealed the three dimensional structure of a key enzyme that enables the single-celled parasite that causes African trypanosomiasis (or sleeping sickness) in humans.
With the elucidation of the 3D structure of the cathepsin B enzyme, it will be possible to design new drugs to inhibit the parasite (Trypanosoma brucei) that causes sleeping sickness, leaving the infected human unharmed.

The research team, including several ASU scientists, is led by the German Electron Synchrotron (DESY) scientist Henry Chapman from the Center of Free-Electron Laser Science (CFEL), professor Christian Betzel from the University of Hamburg and Lars Redecke from the SIAS joint Junior Research Group at the Universities of Hamburg and Lübeck. They report their findings this week in Science.

"This is the first new biological structure solved with a free-electron laser," said Chapman of the development.

"These images of an enzyme, which is a drug target for sleeping sickness, are the first results from our new ‘diffract-then-destroy’ snapshot X-ray laser method to show new biological structures which have not been seen before,” explained John Spence, ASU Regents’ Professor of Physics. “The work was led by the DESY group and used the Linac Coherent Light Source at the U.S. Department of Energy’s SLAC National Accelerator Laboratory."

Transferred to its mammalian host by the bite of the tsetse fly, the effects of the parasite are almost always fatal if treatment is not received. The sleeping sickness parasite threatens more than 60 million people in sub-Saharan Africa and annually kills an estimated 30,000 people. Current drug treatments are not well tolerated, cause serious side effects and the parasites are becoming increasingly drug resistant.

“This paper is so exciting as it is based on nanocrystals grown by the groups at DESY in Hamburg and at the University of Lübeck inside living insect cells,” said Petra Fromme, a professor in ASU’s Department of Chemistry and Biochemistry. “This is the first novel structure determined by the new method of femtosecond crystallography. The structure may be of great importance for the development of new drugs to fight sleeping sickness, as it shows novel features of the structure of the CatB protein, a protease that is essential for the pathogenesis, including the structure of natural inhibitor peptide bound in the catalytic cleft of the enzyme.”

An additional difficulty includes the fact that the cathepsin B enzyme is also found in humans and all mammals. However the discovery of the enzyme’s 3D structure has enabled the researchers to pinpoint distinctive structural differences between the human and the parasite’s form of the enzyme. Subsequent drug targets can selectively block the parasite’s enzyme, leaving the patient’s intact.

In addition to Spence and Fromme, other ASU members of the team are Bruce Doak, professor of physics; Uwe Weierstall, research professor in physics; faculty research associates Raimund Fromme, Ingo Grotjohann and Tzu-Chiao Chao; Nadia Zatsepin, post-doctoral researcher, graduate students Christopher Kupitz (Biochemistry), D. Wang (Physics) and Mark Hunter and Richard Kirian who graduated with Ph.D.s from ASU in Chemistry and Physics respectively and now work on the femtosecond crystallography project at Lawrence Livermore National Laboratory and DESY.

The ASU group developed the sample delivery system, worked on the characterization of the crystals with dynamic light scattering and SONNIC and did the early development work on the new data analysis method. All ASU participants are members of the College of Liberal Arts & Sciences.

International team members in addition to those already mentioned include researchers from the Max Planck Institute, Heidelberg, University of Gothenburg, University of Tübingen and Lawrence Livermore National Laboratory.
Jenny Green, jenny.green@asu.edu
480-965-1430
Department of Chemistry and Biochemistry

Jenny Green | EurekAlert!
Further information:
http://www.asu.edu

Further reports about: 3D structure ASU Biochemistry DESY Max Planck Institute drug treatment

More articles from Life Sciences:

nachricht Enduring cold temperatures alters fat cell epigenetics
19.04.2018 | University of Tokyo

nachricht Full of hot air and proud of it
18.04.2018 | University of Pittsburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Wie schwingt ein Molekül, wenn es berührt wird?

Physiker aus Regensburg, Kanazawa und Kalmar untersuchen Einfluss eines äußeren Kraftfeldes

Physiker der Universität Regensburg (Deutschland), der Kanazawa University (Japan) und der Linnaeus University in Kalmar (Schweden) haben den Einfluss eines...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Nachhaltige und innovative Lösungen

19.04.2018 | HANNOVER MESSE

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungsnachrichten

Auf dem Weg zur optischen Kernuhr

19.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics