Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

X-Chromosomen - Öffnen von Haarnadelstruktur erhöht die Dosis

29.07.2013
Taufliegenmännchen besitzen nur halb so viele X-Chromosomen wie Weibchen.

Deshalb müssen ihre X-Chromosomen doppelt so aktiv sein, um dieselbe Proteinmenge zu erzielen. LMU-Wissenschaftler beschreiben nun einen neuen Schalter, der die Verdoppelung der Leistung der in Gang setzt.

Bei der Taufliege Drosophila sind – wie auch beim Menschen - die Geschlechtschromosomen ungleich verteilt: Die Weibchen verfügen über zwei X-Chromosomen, die Männchen besitzen nur ein X- und ein sehr viel kleineres Y-Chromosom. Auf dem Y-Chromosom liegen nur wenige Gene, ganz im Gegensatz zum X-Chromosom: Hier befinden sich zahlreiche Gene, in denen die Baupläne für Proteine festgelegt sind.

Daher müssen diese Gene trotz der schlechteren Ausgangslage bei den Männchen in beiden Geschlechtern gleichermaßen zur Ausprägung kommen – anderenfalls sind die Männchen nicht lebensfähig.

Die Männchen kompensieren ihren Mangel, indem dank der sogenannten Dosis-Kompensation die Aktivität aller Gene auf ihrem X-Chromosom verdoppelt wird. Für die Erkennung des X Chromosoms und die Aktivierung der dort befindlichen Gene ist der Dosis-Kompensationskomplex (DCC) verantwortlich: Eine komplizierte molekulare Maschinerie, in der neben sogenannten MSL-Proteinen auch lange RNA Moleküle (roX) vorliegen. „Für das Funktionieren des DCC ist der korrekte Einbau der roX-RNAs essentiell. Wie dies genau geschieht, war bisher allerdings noch ungeklärt“, sagt der LMU-Biologe Professor Peter Becker, der mit seinem Team untersucht, wie die Enzymmaschinerie des DCC reguliert wird.

Schalter mit bindender Wirkung

Einen ersten wichtigen Schritt haben die Wissenschaftler nun geschafft, indem sie zeigen konnten, dass die roX-RNAs ihre Struktur ändern müssen, bevor ein funktionierender DCC zustande kommt. Die RNAs beinhalten eine charakteristische sogenannte Haarnadelstruktur, die in verschiedenen Fliegenspezies übereinstimmt. „Wir waren schon lange der Ansicht, dass eine so weit verbreitete Struktur eine funktionelle Bedeutung haben sollte. Bisher scheiterten allerdings alle Versuche, eine spezifische Bindung der MSL-Proteinkomponenten des DCC an diese Haarnadelstruktur nachzuweisen“, erklärt Becker.

Dieses Geheimnis hat sich nun aufgeklärt: Die Wissenschaftler konnten zeigen, dass die Bindung nicht direkt an die Haarnadelstruktur erfolgt. Stattdessen muss die Struktur zuerst durch ein bestimmtes Enzym entwunden werden, bevor die MSL Proteine binden können und ein funktionsfähiger DCC entsteht. Die Haarnadelstruktur stellt somit gewissermaßen die „Aus“-Stellung eines Schalters dar, der erst durch ihre Auflösung aktiv wird. „Wir vermuten, dass dieser Schalter nur unter Bedingungen betätigt wird, wie sie an bestimmten Stellen des X-Chromosoms vorliegen – so könnte sichergestellt werden, dass die Dosiskompensation nur bei X-Chromosomen aktiv wird“, sagt Becker.

Die Wissenschaftler nehmen an, dass lange RNAs auch bei anderen regulatorischen Komplexen eine wesentlich aktivere Rolle spielen als gedacht: „Bisher galten diese RNAs nur als Gerüst für die Bindung von Proteinen. Wir vermuten aber, dass sie durch Bindung die Aktivität der assoziierten Proteine beeinflussen. Für den DCC konnten wir das nun zeigen“, sagt Becker, der auf diesem Gebiet weiterforschen wird. „Jetzt wird es erst richtig spannend“. (Molecular Cell 2013) göd

Die Arbeiten wurden von der DFG durch den SFB Transregio 5 gefördert und von der EU im Rahmen des ERC Advanced Grants „Assembly and maintenance of a co-regulated chromosomal compartment“ (ACCOMPLI) unterstützt.

Publikation:
ATP-Dependent roX RNA Remodeling by the Helicase maleless Enables Specific Association of MSL Proteins
Sylvain Maenner, Marisa Müller, Jonathan Fröhlich, Diana Langer and Peter B. Becker
Molecular Cell 2013
http://dx.doi.org/10.1016/j.molcel.2013.06.011
Kommentar in der gleichen Ausgabe:
Noncoding roX RNA Remodeling Triggers Fly Dosage Compensation Complex Assembly.
Wutz A. Mol Cell. 2013 Jul 25;51(2):131-2. doi: 10.1016/j.molcel.2013.07.007.
PMID: 23870139 [PubMed - in process]
Kontakt:
Prof. Dr. Peter B. Becker
Adolf-Butenandt-Institut
Tel: +49-89-218075-427
Secretarial Assistant: Edith Müller
Tel: +49-89-218075-428
edith.mueller01@med.uni-muenchen.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.med.uni-muenchen.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Verbesserte Kohlendioxid-Fixierung dank Mikrokompartiment
25.09.2017 | Max-Planck-Institut für Biochemie

nachricht Regenbogenfarben enthüllen Werdegang von Zellen
25.09.2017 | Technische Universität Dresden

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Legionellen? Nein danke!

25.09.2017 | Veranstaltungen

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungen

Hochschule Karlsruhe richtet internationale Konferenz mit Schwerpunkt Informatik aus

25.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Legionellen? Nein danke!

25.09.2017 | Veranstaltungsnachrichten

Hochvolt-Lösungen für die nächste Fahrzeuggeneration!

25.09.2017 | Seminare Workshops

Seminar zum 3D-Drucken am Direct Manufacturing Center am

25.09.2017 | Seminare Workshops