Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Wurzeln unserer Ernährung

27.01.2010
Tübinger Max-Planck-Forscher erklären, wie die Wurzelbildung in Pflanzen gesteuert wird

Die Wurzeln sind die am meisten unterschätzten Teile einer Pflanze, obwohl sie über die Wasser- und Nährstoffaufnahme das Wachstum und die spätere Blüte überhaupt erst ermöglichen.

In einer Welt, in der sich einerseits die Verfügbarkeit von Wasser im Zuge des Klimawandels ständig ändert und andererseits die menschliche Bevölkerung rasant zunimmt, ist es von entscheidender Bedeutung zu verstehen, wie die Wurzelentwicklung bei Pflanzen gesteuert wird. Wissenschaftler am Max-Planck-Institut für Entwicklungsbiologie in Tübingen haben nun herausgefunden, dass das Pflanzenhormon Auxin in Kombination mit einer erhöhten Zellzyklusaktivität zu einem verstärkten Wurzelwachstum bei der Ackerschmalwand (Arabidopsis thaliana) führt. Zudem haben sie entdeckt, dass zwei Proteine, die die Embryoentwicklung steuern, ebenfalls eine Rolle bei der Verzweigung der Wurzeln spielen. Diese Ergebnisse könnten genutzt werden, um Pflanzen zu züchten, die trotz Nährstoff- und Wasserarmut schnell wachsen und hohe Erträge liefern. (PNAS, 25. - 29. Januar 2010)

Bereits vor etwa zweihundert Jahren prophezeite der britische Ökonom Thomas Robert Malthus, dass eine kontinuierlich wachsende Weltbevölkerung früher oder später mit Hungersnöten, Krankheiten und einer erhöhten Todesrate konfrontiert werden wird. Heute stehen wir vor der Herausforderung, ausreichend Nahrung für eine ständig wachsende Weltbevölkerung bereitzustellen. Dies wird eine Erhöhung der Nahrungsmittelproduktion erfordern, welche die der letzten Jahrzehnte übersteigt. Um das zu erreichen, benötigen wir eine neue grüne Revolution: Pflanzen, die auf nährstoffarmen und trockenen Böden wachsen und dennoch hohe Erträge liefern.

Bei Pflanzen denkt man normalerweise zunächst an Blätter, bunte Blüten und mehr oder weniger schmackhafte Früchte, jedoch nur selten an die unter der Erde verstecken Wurzeln. Der das Leben oberhalb des Erdbodens überhaupt erst ermöglichende Pflanzenteil, das Wurzelsystem, besteht aus einer Hauptwurzel von der viele Seitenwurzeln "abzweigen". Ohne Wurzeln könnten die meisten Pflanzen weder Wasser noch Nährstoffe aufnehmen noch sich im Boden verankern oder mit bestimten symbiotischen Organismen interagieren.

Auf frühere Beobachtungen aufbauend, beschrieben Wissenschaftler aus der Abteilung von Gerd Jürgens am Tübinger Max-Planck-Institut für Entwicklungsbiologie zusammen mit Kollegen aus Belgien, dass die Kombination aus einer erhöhten Zellzyklusaktivität und dem Pflanzenhormon Auxin, die Ausbildung von Seitenwurzeln bei der Ackerschmalwand Arabidopsis thaliana fördert. Des Weiteren haben sie nachgewiesen, dass zwei Proteine, welche ausschlaggebend für die Embryoentwicklung sind, ebenfalls eine Rolle bei der "Verzweigung" der Wurzeln spielen. Zum ersten Mal konnte gezeigt werden, dass die Reaktion auf das Pflanzenhormon Auxin in einzelnen, aufeinanderfolgenden Schritten stattfindet.

"Dieses Wissen über ein verbessertes und verstärktes Wurzelsystem ist ein wichtiger Schritt, um die Ernährung der Weltbevölkerung zu sichern. Es hilft die Ernte zu steigern und stärkt die Rolle der Pflanze als Energielieferant", sagt Ive De Smet. "Da Wasser, Stickstoff und Phosphor oft nur begrenzt vorhanden sind, ermöglicht ein Wurzelsystem, das Nährstoffe effektiver aufnehmen und speichern kann, einen reduzierten Düngemitteleinsatz auf minderwertigen Böden", fügt der Biologe hinzu.

Originalveröffentlichung
Ive De Smet, Steffen Lau, Ute Voß, Steffen Vanneste, René Benjamins, Eike H. Rademacher, Alexandra Schlereth, Bert De Rybel, Valya Vassileva, Wim Grunewald, Mirande Naudts, Mitchell P. Levesque, Jasmin S. Ehrismann, Dirk Inzé, Christian Luschnig, Philip N. Benfey, Dolf Weijers, Marc C. E. Van Montagu, Malcolm J. Bennett, Gerd Jürgens, Tom Beeckmann: Bimodular auxin response controls organogenesis in Arabidopsis. PNAS Early Edition, January 25 - 29, 2010, www.pnas.org/cgi/doi/10.1073/pnas.0915001107
Ansprechpartner
Dr. Ive De Smet
Tel: 07071 601-1301
E-Mail: ive.desmet@tuebingen.mpg.de
Dr. Susanne Diederich (Presse und Öffentlichkeitsarbeit)
Tel: +49 7071 601-333
E-Mail: presse@tuebingen.mpg.de
Das Max-Planck-Institut für Entwicklungsbiologie betreibt Grundlagenforschung auf den Gebieten der Biochemie, Molekularbiologie, Genetik sowie Zell- und Evolutionsbiologie. Es beschäftigt rund 325 Mitarbeiterinnen und Mitarbeiter und hat seinen Sitz auf dem Max-Planck-Campus in Tübingen. Das MPI für Entwicklungsbiologie ist eines der 80 Institute und Forschungseinrichtungen der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

Dr. Susanne Diederich | idw
Weitere Informationen:
http://tuebingen.mpg.de
http://tuebingen.mpg.de/startseite/detail/die-wurzeln-unserer-ernaehrung.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Einblick ins geschlossene Enzym
26.06.2017 | Universität Konstanz

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Future Security Conference 2017 in Nürnberg - Call for Papers bis 31. Juli

26.06.2017 | Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblick ins geschlossene Enzym

26.06.2017 | Biowissenschaften Chemie

Laser – World of Photonics: Offene und flexible Montageplattform für optische Systeme

26.06.2017 | Messenachrichten

Biophotonische Innovationen auf der LASER World of PHOTONICS 2017

26.06.2017 | Messenachrichten