Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wozu Erdöl, wenn man Abfall hat?

23.02.2015

Chemikalien, die bisher aus Erdöl gewonnen wurden, lassen sich nun aus billigen Abfallstoffen herstellen – dank eines neuen Syntheseverfahrens der TU Wien.

Lävulinsäure ist eigentlich gar nichts Besonderes. Sie fällt als Nebenprodukt in der Zuckerindustrie an, etwa eine halbe Million Tonnen davon wird jedes Jahr hergestellt. Nur ein geringer Anteil dieser Menge wird derzeit weiterverwertet.


Michael Fink im Labor an der TU Wien

TU Wien

In der Forschungsgruppe von Prof. Marko Mihovilovic an der TU Wien in der Gruppe von Prof. Marko D. Mihovilovic wurde aber nun eine Methode entwickelt, diese Säure mit Hilfe von Bakterien zum wertvollen Rohstoff zu machen: Lävulinsäure lässt sich durch ein neuentwickeltes biokatalytisches Verfahren zu wichtigen Grundchemikalien weiterverarbeiten, die derzeit noch aus Erdöl synthetisiert werden.

Vom Abfallstoff zur wertvollen Plattformchemikalie

Bloß 3 bis 5 Euro pro Kilo kostet Lävulinsäure heute, und dieser Preis ließe sich noch senken, wenn das wirtschaftliche Interesse daran größer wäre. Der Weg von der billigen Lävulinsäure zum wertvollen Endprodukt lässt sich in mehreren Schritten zurücklegen: „Entscheidend ist es, einen Weg zu finden, aus Lävulinsäure die Plattformchemikalie 3-HPA zu gewinnen“, erklärt Michael Fink vom Institut für Angewandte Synthesechemie der TU Wien.

Der Rest ist relativ einfach: Wie man 3-HPA (3-Hydroxypropionsäure) dann weiterverarbeiten kann, ist bereits bekannt: 3-HPA wird heute bereits genutzt um Grundchemikalien herzustellen. „Man erzeugt daraus beispielsweise Natriumpolyacrylat, das für Babywindeln oder auch für Verbandsmaterial eingesetzt wird“, sagt Fink.

Es gab schon früher Versuche, aus Lävulinsäure bzw. aus deren Derivaten 3-HPA zu gewinnen – allerdings war das nur mit großem Aufwand möglich. Man benötigte erhöhte Temperaturen und musste 90%iges Wasserstoffperoxid einsetzen – eine sehr korrosive, hochexplosive Substanz, die auch als Raketentreibstoff verwendet wird.

Bakterien statt Raketentreibstoff

An der TU Wien wählte man einen völlig anderen Weg. Man identifizierte zunächst eine Reihe von Enzymen, von denen man vermutete, dass sie bei der Verarbeitung von Lävulinsäurederivaten hilfreich sein könnten. Dann brachte man E.coli-Bakterien dazu, diese Enzyme zu produzieren. Das gelingt, indem man Plasmide in das Bakterium einbringt.

Plasmide sind kleine DNA-Moleküle, die nicht zum eigentlichen Bakterienchromosom gehören, aber trotzdem die Bauanleitung für Enzyme speichern können. „Wenn die Bakterien die in Frage kommenden Enzyme produzieren, kann man direkt im Bioreaktor ausprobieren, welche für unseren gewünschten Prozess am besten geeignet sind“, sagt Michael Fink.

Unter normalen atmosphärischen Bedingungen und ganz ohne toxische oder explosive Substanzen kann man dann die E.coli-Bakterien zur Herstellung wertvoller Stoffe verwenden – entweder setzt man sie direkt im Bioreaktor ein, oder man lässt sie in einer Bakterienkultur zunächst das Enzym erzeugen und verwendet dieses dann zur Produktion von Ethyl-3-HPA, einer Substanz, die problemlos in 3-HPA umgewandelt werden kann.

„Beides funktioniert, beides hat Vor- und Nachteile“, sagt Michael Fink. Verwendet man lebende Bakterien, bekommt man einen ständigen Nachschub der nötigen Enzyme, allerdings besteht dann die Gefahr, dass die Bakterienkultur irgendwann nicht mehr in ausreichendem Maß weiterwächst oder gar stirbt. Das Isolieren des Enzyms ist ein zusätzlicher Arbeitsschritt, macht das Verfahren danach aber einfacher.

Nächster Schritt: technische Anwendung

Mehrere natürlich vorkommende sowie bereits artifiziell weiterentwickelte Enzyme wurden untersucht, um einen geeigneten Kandidaten zu finden. „Die Ergebnisse sind sehr vielversprechend“, sagt Michael Fink. „Allerdings muss das Verfahren erst auf eine großtechnische Dimension skaliert werden – die Mengen, die man in solchen Versuchen im Labor herstellt, sind natürlich noch gering.“ Michael Fink erwartet allerdings keine fundamentalen Schwierigkeiten bei der Entwicklung eines solchen Prozesses.

Rückfragehinweis:
Dr. Michael J. Fink
Institut für Angewandte Synthesechemie
Technische Universität Wien
Getreidemarkt 9 / 163, 1060 Wien
T: +43-676-9005995
michael.j.fink@tuwien.ac.at

Prof. Marko Mihovilovic
Institut für Angewandte Synthesechemie
Technische Universität Wien
Getreidemarkt 9, 1060 Wien
T: +43-1-58801-163615
marko.mihovilovic@tuwien.ac.at

Weitere Informationen:

http://pubs.rsc.org/en/Content/ArticleLanding/2015/CC/c4cc08734h#!divAbstract Originalpublikation

Dr. Florian Aigner | Technische Universität Wien

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zirkuläre RNA wird in Proteine übersetzt
24.03.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen
24.03.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise