Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wolken veränderen die chemische Zusammensetzung und die Eigenschaften von Partikeln

02.08.2012
Wolken entstehen nicht nur aus organischen Partikeln, sie können auch selbst organisches Material produzieren.

Das hat ein internationales Forscherteam während einer großen Messkampagne im Thüringer Wald erstmals direkt beobachtet, berichten Wissenschaftler des Leibniz-Instituts für Troposphärenforschung (IfT) auf der Internationalen Konferenz zu Wolken und Niederschlag (ICCP 2012) in Leipzig. Dazu hatten die Forscher organische Partikel vor und nach dem Entstehen der Wolken chemisch untersucht.


Während einer sechswöchigen Kampagne im Herbst 2010 wurde während insgesamt 370 Stunden je eine Wolke an der Gipfelstation Schmücke im Thüringer Wald registriert.
Foto: Tilo Arnhold/IfT


An der Kampagne „Hill-Cap Cloud Thuringia 2010 (HCCT-2010)“ hatten insgesamt rund 50 Wolkenforscher aus Deutschland, Frankreich, England und den USA teilgenommen. Im Bild: Dr. Dominik van Pinxteren beim der Probenahme von Wolkenwasser, das späte rim Labor chemisch analysiert wurde.
Foto: Tilo Arnhold/IfT

Aerosolpartikel wachsen durch Wasseraufnahme und bilden schließlich Wolkentröpfchen, Wolken und auch Niederschlag. Wolken verändern aber auch die chemische Zusammensetzung von Partikeln. Was dabei genau passiert, ist jedoch zum Teil immer noch unbekannt. Eine internationale Messkampagne unter Leitung des IfT will einen Teil dieser Wissenslücken nun schließen.

Die chemische Untersuchung von Wolken direkt vor Ort ist ein großes Problem, weil es schwierig ist, komplexe Messsyteme direkt in die Wolke zu transportieren. Und selbst dann sind solche Messungen meist nur eine Momentaufnahme. Im Thüringer Wald rund um die Schmücke gingen die Wissenschaftler daher umgekehrt vor: Sie transportierten die Messtechnik nicht zu den Wolken, sondern bauten sie an drei unterschiedlichen Stellen auf – also vor, auf und hinter dem Gebirgskamm.

Anschließend werteten sie nur jene Wolken aus, bei denen die Luft die drei Stationen passiert hatte. So war es möglich, Physik und Chemie vor, während und nach der Wolkenbildung intensiv zu untersuchen. „Mit Hilfe von massenspektrometrischen Messverfahren zur Partikelcharakterisierung konnte im Feld beobachtet werden, dass Aerosolpartikel nach einem Wolkendurchgang eine etwas veränderte chemische Zusammensetzung besitzen“, brichtet Dr. Dominik van Pinxteren vom IfT.

„Zumindest bei einigen Wolkenereignissen produziert die Wolke Sulfat aus Schwefeldioxid. Erstmals konnten wir auch direkte Hinweise darauf finden,dass organisches Material aus organischen Vorläuferverbindungen gebildet wird. Die genauen Bedingungen, unter denen diese Prozesse stattfinden, werden momentan noch untersucht.“

Und noch einen Effekt beobachteten die Wissenschaftler: Partikel, aus denen bereits ein Wolkentropfen geworden ist, werden später schneller wieder zu Wolkentropfen. Denn Wolken verändern die Eigenschaften von Partikeln. Nach einem Wolkendurchgang sind Partikel hygroskoper, d.h. sie nehmen leichter Wasser auf und bilden in folgenden Wolkenbildungsprozessen leichter neue Wolkentropfen. Dies wurde mit Messgeräten im Feld direkt beobachtet und steht sehr wahrscheinlich im Zusammenhang mit der veränderten chemischen Zusammensetzung der Partikel.

An der Kampagne „Hill-Cap Cloud Thuringia 2010 (HCCT-2010)“ hatten insgesamt rund 50 Wolkenforscher aus Deutschland, Frankreich, England und den USA teilgenommen. Ziel war es, mit speziellen Messmethoden die Veränderungen von Aerosolpartikeln bei der Aktivierung zu einer Wolke und innerhalb einer Wolke zu untersuchen. Während dieser Prozesse laufen in allen Partikeln eine Vielzahl von chemischen Reaktionen ab, deren Produkte durch geeignete Messmethoden nachgewiesen werden können. Veränderungen der chemischen Zusammensetzung führen zu Veränderungen der physikalischen Eigenschaften der Partikel, die durch die Experimente besser verstanden werden sollen. Während der sechswöchigen Kampagne im Herbst 2010 wurde während insgesamt 370 Stunden je eine Wolke an der Gipfelstation registriert. Anhand meteorologischer Analysen wurden 51 Wolkenstunden ermittelt, während derer durch Vergleich der drei Messstationen ein Einfluss der Wolke auf das lokale Aerosol untersucht werden kann.

Der umfangreiche Datensatz wird momentan detailliert ausgewertet und dient als Grundlage für eine mikrophysikalische und chemische Modellierung einzelner Zeitabschnitte. Erste Ergebnisse werden Schritt für Schritt publiziert. Die Ergebnissen sollen später in komplexe höherskalige Modelle integriert werden, um die Wirkung von Aerosolen und Wolken im Erdsystem besser beschreiben zu können. Aerosole und Wolken beeinflussen die Chemie der Atmosphäre, können die Luftqualität verändern, haben über die Strahlungseigenschaften Auswirkungen auf das globale Klima und steuern den Niederschlag.

Vom 30. Juli bis zum 3. August 2012 findet im Hörsaalgebäude der Universität Leipzig die 16. Internationalen Konferenz zu Wolken und Niederschlag (ICCP 2012) statt. Gastgeber sind das Leibniz-Institut für Troposphärenforschung (IfT) und das Leipziger Institut für Meteorologie (LIM) der Universität Leipzig. Die ICCP ist für Wolken- und Niederschlagsforscher die weltweit wichtigste und größte Konferenz. Erwartet werden rund 500 Teilnehmer aus 37 Ländern, die fast 650 verschiedene Beiträge präsentieren. Damit ist die Leipziger Konferenz voraussichtlich die größte aller bisher veranstalteten Wolken- und Niederschlagskonferenzen.

Tilo Arnhold

Publikationen:
D. van Pinxteren, W. Birmili, B. Fahlbusch, W. Fomba, T. Gnauk, Y. Iinuma, S. Mertes, K. Dieckmann, M. Merkel, C. Müller, K. Müller, L. Poulain, G. Spindler, M. Schäfer, F. Stratmann, A. Tilgner, L. Schöne, P. Bräuer, K. Weinhold, H. Wex, A. Wiedensohler, W. Zhijun, S. Borrmann, E. Harris, A. Roth, J. Schneider, B. Sinha, I. George, D. Heard, L. Whalley, B. D'Anna, C. George, M. Müller, W. Haunold, A. Engel, A. Weber, D. Amedro, C. Fittschen, C. Schoemaecker, J. Collett, T. Lee, H. Herrmann (2012): Hill Cap Cloud Thuringia 2010: A ground-based field study on aerosol cloud interaction. ICCP-2012, Leipzig. (#560)

K. Dieckmann, M. Schäfer, P. Zedler, H. Herrmann, D. van Pinxteren, W. Birmili, M. Merkel, Z. Wu, A. Wiedensohler, T. Mentel, S. Henning, H. Wex, F. Stratmann (2012): Influence of Cloud Processing on CCN Activation Behaviour in the Thuringian Forest, Germany. ICCP-2012, Leipzig. (#607)

Die Messkampagne HCCT-2010 (Hill Cap Cloud Thuringia) wurde von der Deutschen Forschungsgemeinschaft (DFG) gefördert.

Weitere Informationen:
Dr. Dominik van Pinxteren/ Prof. Hartmut Herrmann
Leibniz-Institut für Troposphärenforschung (IfT)
Tel. 0341-235-2156, -2446
http://www.tropos.de/ift_personal.html
Links:
HCCT 2010 (Hill Cap Cloud Thuringia 2010):
http://www.tropos.de/news/pms/Wolkenmesskampagne_IfT_Leipzig_2010-09-08.pdf
http://www.mpic.de/HCCT-2010.19743.0.html
Mit dem Kopf in den Wolken - Wolkenmess-Experiment im Thüringer Wald (Deutschlandfunk, 2.12.2010):

http://www.dradio.de/dlf/sendungen/forschak/1333391/

Konferenz ICCP-2012:
Veranstalter der Konferenz ist die Internationale Kommission für Wolken und Niederschlag (ICCP), eine Institution der Internationalen Assoziation für Meteorologie und Atmosphärische Wissenschaften (IAMAS). Ziel der ICCP ist es, durch die Organisation von Konferenzen, Workshops und Symposien die Forschung im Bereich von Wolken und Niederschlag in der Welt zu stimulieren. Das erste Internationale Wolkenphysik-Meeting fand 1954 in Zürich statt.

http://www.iccp-iamas.org/

Homepage der Tagung:
http://iccp2012.tropos.de/
Programm der Tagung:
http://iccp2012.tropos.de/iccp_program.html
Die Tagung wird gefördert von der DFG (Deutschen Forschungsgemeinschaft), der WMO (World meteorological Organization), der IUGG (International Union of Geodesy and Geophysics) und der IAMAS (International Association of Meteorology and Atmospheric Sciences).

Das Leibniz-Institut für Troposphärenforschung ist Mitglied der Leibniz-Gemeinschaft. Ihr gehören zurzeit 87 Forschungsinstitute und wissenschaftliche Infrastruktureinrichtungen für die Forschung sowie zwei assoziierte Mitglieder an. Die Ausrichtung der Leibniz-Institute reicht von den Natur-, Ingenieur- und Umweltwissenschaften über die Wirtschafts, Sozial- und Raumwissenschaften bis hin zu den Geisteswissenschaften. Leibniz-Institute bearbeiten gesamtgesellschaftlich relevante Fragestellungen strategisch und themenorientiert. Dabei bedienen sie sich verschiedener Forschungstypen wie Grundlagen-, Groß- und anwendungsorientierter Forschung. Sie legen neben der Forschung großen Wert auf wissenschaftliche Dienstleistungen sowie Wissenstransfer in Richtung Politik, Wissenschaft, Wirtschaft und Öffentlichkeit. Sie pflegen intensive Kooperationen mit Hochschulen, Industrie und anderen Partnern im In- und Ausland. Das externe Begutachtungsverfahren der Leibniz-Gemeinschaft setzt Maßstäbe. Jedes Leibniz-Institut hat eine Aufgabe von gesamtstaatlicher Bedeutung. Bund und Länder fördern die Institute der Leibniz-Gemeinschaft daher gemeinsam. Die Leibniz-Institute beschäftigen etwa 16.800 Mitarbeiterinnen und Mitarbeiter, davon sind ca. 7.800 Wissenschaftler, davon wiederum 3.300 Nachwuchswissenschaftler. Der Gesamtetat der Institute liegt bei mehr als 1,4 Mrd. Euro, die Drittmittel betragen etwa 330 Mio. Euro pro Jahr.

Tilo Arnhold | Leibniz-Institut
Weitere Informationen:
http://www.leibniz-gemeinschaft.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Einblick ins geschlossene Enzym
26.06.2017 | Universität Konstanz

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Future Security Conference 2017 in Nürnberg - Call for Papers bis 31. Juli

26.06.2017 | Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Digital Mobility“– 48 Mio. Euro für die Entwicklung des digitalen Fahrzeuges

26.06.2017 | Förderungen Preise

Fahrerlose Transportfahrzeuge reagieren bald automatisch auf Störungen

26.06.2017 | Verkehr Logistik

Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit

26.06.2017 | Physik Astronomie