Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wo sich Aids-Viren in Zellen verstecken

08.04.2015

HI-Viren bevorzugen Plätze gleich hinter der Eintrittspforte zum Zellkern / Forscherteam des Universitätsklinikums Heidelberg und des Deutschen Zentrums für Infektionsforschung entdeckte, warum das genetische Material des Virus an bestimmten Stellen des menschlichen Erbguts besonders häufig integriert wird / Ergebnisse aktuell in Nature erschienen

Haben Aids-Viren eine Zelle des menschlichen Immunsystems infiziert, lassen sie ihr genetisches Material im Zellkern in die menschliche Erbinformation (DNS) einbauen.


Erbinformation der HI-Viren (grün) am Rande des Zellkerns in der Nähe der Kernporen (rot) einer infizierten Zelle des Immunsystems (CD4 T-Zelle).

Universitätsklinikum Heidelberg

Weiter als in den Eingangsbereich des Zellkerns kommen sie dabei meistens nicht, wie Wissenschaftler des Zentrums für Infektiologie (Zentrumssprecher: Professor Dr. Hans-Georg Kräusslich) am Universitätsklinikum Heidelberg und des Deutschen Zentrums für Infektionsforschung (DZIF) in Zellversuchen nun entdeckten:

Die Erbinformation der HI-Viren findet sich besonders häufig in den aktiven DNS-Abschnitten direkt hinter den Eintrittspforten zum Zellkern, den Kernporen. „Man kann sich das in etwa vorstellen wie bei einem verspäteten Besucher einer Veranstaltung. Er kommt durch die Tür und nimmt den erstbesten freien Sitzplatz“, beschreibt Dr. Marina Lusic, Leiterin einer Arbeitsgruppe des Bereichs Virologie. Die Arbeit ist aktuell in der Fachzeitschrift „Nature“ erschienen.

Die renommierte Virologin Dr. Marina Lusic wechselte 2014 vom Molecular Medicine Laboratory in Triest, Italien, nach Heidelberg, um im Rahmen des Deutschen Zentrums für Infektionsforschung (DZIF) in enger Zusammenarbeit mit führenden Forschungsgruppen aus ganz Deutschland die Funktionsweise des HI-Virus weiter zu entschlüsseln.

Versteckspiel der Viren macht HIV bis heute unheilbar

Die aktuell veröffentlichten Ergebnisse sind ein erster Schritt zum besseren Verständnis, wie HI-Viren ihre Erbinformation in der Zelle verstecken. Verborgen im Zellkern im menschlichen Erbgut und vorübergehend deaktiviert ist sie weder erreichbar für die Abwehrmechanismen der Zellen noch für Medikamente, die nur freie Viren im Blut vernichten können.

Virologen bezeichnen dieses Versteckspiel als Latenz. Sie ist der Grund, warum HIV bis heute nicht heilbar ist: Sobald die Medikamente abgesetzt werden, wird die schlummernde Erbinformation der Viren wieder aktiv und führt damit zur Produktion und Vermehrung neuer Viren, die dann den Körper überschwemmen. „Erst, wenn wir die Mechanismen der HIV-Latenz kennen, werden wir in der Lage sein, therapeutische Gegenmaßnahmen zu entwickeln“, so Lusic.

Bereits zuvor war bekannt, dass HI-Viren ihr Erbmaterial nicht wahllos in das menschliche Genom integrieren. Sie nutzen bevorzugt eine Reihe häufig aktiver DNS-Abschnitte (Gene), die an unterschiedlichen Zellfunktionen beteiligt sind. Wie es zu dieser Auswahl unter den rund 20.000 Genen des menschlichen Genoms kommt, konnte man sich bisher allerdings nicht erklären. Des Rätsels Lösung klingt banal: Alle diese Gene befinden sich in unmittelbarer Nähe der Kernporen.

An infizierten Zellen unter dem Mikroskop zeigte sich: Das farblich markierte Genmaterial der HI-Viren wird in die nächsten aktiven Gene eingebaut, auf die es nach dem Eintritt durch die Kernporen stößt. In eben diesen Bereichen rund um die Kernporen befinden sich in der Regel genau die Gene, die zuvor bereits – ohne den Zusammenhang zu kennen – als bevorzugtes Ziel der Viren identifiziert worden waren. In den weiter mittig gelegenen Bereichen des Zellkerns fand sich dagegen kaum genetisches Material der Viren.

HIV benötigt Bausteine der Kernporen für weitere Entwicklungsschritte

Um sich in das menschliche Erbgut einbauen zu können, benötigen die HI-Viren die Hilfe bestimmter zelleigener Proteine. „Eine wichtige Rolle spielten dabei Eiweißbestandteile der Kernporen. Das ist wahrscheinlich ein Grund dafür, warum HIV in den Bereichen unmittelbar hinter den Kernporen bleibt“, erklärt Dr. Lusic.

Ist HIV erst einmal in die Erbinformation eingefügt, kann es die Zelle dazu umprogrammieren, ab sofort nur noch Kopien des Virus in großer Menge herzustellen und sich damit schließlich selbst zu zerstören. Oder es bleibt zunächst inaktiv und wartet ab. Warum sich ein Teil der Viren erst einmal für unbestimmte Zeit selbst deaktivieren, ist bisher noch völlig unklar. Dieser Frage möchte Dr. Marina Lusic mit ihrem Team als nächstes nachgehen.

Im Deutschen Zentrum für Infektionsforschung (DZIF) entwickeln bundesweit mehr als 150 Wissenschaftler aus 32 Institutionen gemeinsam neue Ansätze zur Vorbeugung, Diagnose und Behandlung von Infektionskrankheiten. Ziel ist die sogenannte Translation, die schnelle, effektive Umsetzung von Forschungsergebnissen in die klinische Praxis. Damit bereitet das DZIF den Weg für die Entwicklung neuer Impfstoffe, Diagnostika und Medikamente gegen Infektionen.

Literatur: Bruna Marini, Attila Kertesz-Farkas, Hashim Ali, Bojana Lucic, Kamil Lisek, Lara Manganaro, Sandor Pongor, Roberto Luzzati, Alessandra Recchia, Fulvio Mavilio, Mauro Giacca & Marina Lusic. Nuclear architecture dictates HIV-1 integration site selection. Nature (2015) doi: 10.1038/nature14226

Kontakt für Journalisten:
Dr. Marina Lusic
Sektion Integrative Virologie
Zentrum für Infektiologie
Universitätsklinikum Heidelberg
Tel.: 06221 56-5007
E-Mail: Marina.Lusic@med.uni-heidelberg.de

Universitätsklinikum und Medizinische Fakultät Heidelberg
Krankenversorgung, Forschung und Lehre von internationalem Rang

Das Universitätsklinikum Heidelberg ist eines der bedeutendsten medizinischen Zentren in Deutschland; die Medizinische Fakultät der Universität Heidelberg zählt zu den international renommierten biomedizinischen Forschungseinrichtungen in Europa. Gemeinsames Ziel ist die Entwicklung innovativer Diagnostik und Therapien sowie ihre rasche Umsetzung für den Patienten. Klinikum und Fakultät beschäftigen rund 12.600 Mitarbeiterinnen und Mitarbeiter und engagieren sich in Ausbildung und Qualifizierung. In mehr als 50 klinischen Fachabteilungen mit ca. 1.900 Betten werden jährlich rund 66.000 Patienten voll- bzw. teilstationär und mehr als 1.000.000 mal Patienten ambulant behandelt. Das Heidelberger Curriculum Medicinale (HeiCuMed) steht an der Spitze der medizinischen Ausbildungsgänge in Deutschland. Derzeit studieren ca. 3.500 angehende Ärztinnen und Ärzte in Heidelberg.

Weitere Informationen:

http://www.klinikum.uni-heidelberg.de/Forschungsgruppen.6558.0.html Forschung Virologie Heidelberg, Zentrum für Infektiologie des Universitätsklinikums Heidelberg
http://www.dzif.de/ Deutsches Zentrum für Infektionsforschung

Julia Bird | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wasserbewegung als Hinweis auf den Zustand von Tumoren
19.04.2018 | Gesellschaft Deutscher Chemiker e.V.

nachricht Verbesserte Stabilität von Kunststoff-Leuchtdioden
19.04.2018 | Max-Planck-Institut für Polymerforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Wie schwingt ein Molekül, wenn es berührt wird?

Physiker aus Regensburg, Kanazawa und Kalmar untersuchen Einfluss eines äußeren Kraftfeldes

Physiker der Universität Regensburg (Deutschland), der Kanazawa University (Japan) und der Linnaeus University in Kalmar (Schweden) haben den Einfluss eines...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Nachhaltige und innovative Lösungen

19.04.2018 | HANNOVER MESSE

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungsnachrichten

Auf dem Weg zur optischen Kernuhr

19.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics