Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wissenschaftlern gelingt die vollständige Rekonstruktion eines Stücks der Netzhaut

08.08.2013
Die Entschlüsselung des Seins – das Gehirn und all seine Verbindungen zu verstehen, das verbirgt sich hinter dem Begriff Connectomics.

Nun ist Wissenschaftlern des Max-Planck-Instituts (MPI) für medizinische Forschung (Heidelberg), des MPI für Neurobiologie (Martinsried) und des MIT (Massachusetts) ein wichtiger Schritt gelungen:


Wissenschaftler rekonstruieren alle Nervenzellen und ihre Verbindungen in einem Stück der Netzhaut einer Maus. Die "Kugeln" zeigen die Zellkörper: Ganglion-Zellen in Blau, Amakrinzellen in Grün, Bipolarzellen in Orange und Fotorezeptoren in Grau. Im Hintergrund erscheint die Verbindungsmatrix, das Connectome, der 950 Nervenzellen. © MPI für medizinische Forschung / Kuhl & Denk


Rekonstruktion von 950 Nervenzellen und ihren Verbindungen in einem Stück Netzhaut einer Maus. Die Daten wurden mit dem "serial block-face" Elektronenmikroskop (graue Blöcke) gewonnen und mit Hilfe von 200 Studenten analysiert. © MPI für medizinische Forschung / Isensee & Kuhl

Nach vier Jahren Datenanalyse haben sie ein exaktes Diagramm erstellt, das alle Nervenzellen und ihre Verbindungen in einem Stück der Netzhaut einer Maus zeigt. Bereits dieser vergleichsweise kleine Einblick ins Gehirn brachte sowohl einen neuen Zelltyp ans Licht, als auch Verschaltungen, die bestimmte Reaktionen einzelner Netzhautzellen erklären könnten.

Das menschliche Gehirn besitzt zirka 100 Milliarden Nervenzellen, und jede ist über Tausende von Kontakten mit anderen Zellen verbunden. Schon lange vermuten Wissenschaftler, dass die Essenz unseres Seins – was wir fühlen, denken, woran wir uns erinnern – in diesen Kontakten gespeichert ist. Doch wie lässt sich das Geheimnis dieser Verbindungen entschlüsseln? "Schon der winzigste Würfel Gehirnmasse beinhaltet tausende Nervenzellen mit hunderttausenden Kontakten", sagt Moritz Helmstaedter, Erstautor der Studie und mittlerweile Leiter einer eigenen Arbeitsgruppe am MPI für Neurobiologie in Martinsried.

Entschlüsselung des Connectomes

Die Neurobiologen ließen sich von diesen Zahlen jedoch nicht abschrecken. In der Fachzeitschrift Nature berichten die Max-Planck-Forscher nun von einem großen ersten Schritt, der ihnen zusammen mit ihren Kollegen aus den USA gelungen ist: Sie haben alle Nervenzellen und Verbindungen aus einem Stück Mäusenetzhaut kartiert.

Obwohl der Netzhautwürfel gerade einmal einen Zehntel Millimeter Kantenlänge hatte, kamen darin knapp 1000 Nervenzellen mit rund einer halben Million Verbindungen vor. "Wir brauchten ungefähr einen Monat um die Daten zu gewinnen und vier Jahre um sie zu analysieren" sagt Moritz Helmstaedter. Ein Grund dafür ist die extrem aufwändige Analyse der elektronenmikroskopischen Bilder des Hirngewebes: Die hauchdünnen Fortsätze der Nervenzellen müssen über lange Strecken verfolgt und Verbindungen zwischen ihnen erkannt werden. Heutige Computeralgorithmen sind für diese Aufgabe zwar sehr hilfreich, an vielen Stellen aber doch zu unzuverlässig. Daher müssen immer noch Menschen Entscheidungen über reale und falsche Abzweigungen in den neuronalen "Drähten" fällen. In der nun publizierten Arbeit verschlangen allein diese Entscheidungen rund 20.000 menschliche Arbeitsstunden. Um mit denselben Methoden die Verdrahtung eines ganzen Mäusegehirns zu entschlüsseln, wären mehrere Milliarden Arbeitsstunden nötig.

Netzhautdiagramm gibt neue Einblicke

Die Netzhaut wandelt nicht einfach nur Bilder in elektrische Signale um sondern trennt und filtert die Bildinformationen vor der Weitergabe an das Gehirn. Entsprechend komplex ist das Netzwerk der Nervenzellen in diesem kleinen Neurocomputer. Durch die Kartierung des Netzhautstücks stießen die Wissenschaftler nun auf einen bislang unbekannten Zelltyp, der zur Klasse der Bipolarzellen gehört, aber dessen Funktion zurzeit noch unklar ist. An anderer Stelle enthält das erstellte Verbindungsdiagramm Verschaltungsmuster, die erklären könnten warum manche Zellen auf eine ganz bestimmte Art auf Reize reagieren. "Diese Ergebnisse zeigen uns, dass wir auf dem richtigen Weg sind, obwohl wir mit dieser Arbeit gerade einmal 0.1 Prozent der Netzhaut einer Maus analysiert haben", so Helmstaedter. Wie viele andere Neurobiologen ist er davon überzeugt, dass die Entschlüsselung des Connectomes die Hirnforschung revolutionieren wird.

Hilfe von Hightech-Mikroskop und der Internetgemeinde

"Unser Ziel ist es, das ganze Connectom eines Mäusegehirns zu analysieren und zu verstehen", sagt Winfried Denk, der gerade im Begriff ist sein Labor vom MPI für medizinische Forschung in Heidelberg ans MPI für Neurobiologie in Martinsried zu verlegen. Wie realistisch ist ein solch ehrgeiziges Ziel, wenn die Analyse des winzigen Netzhautstücks bereits vier Jahre gedauert hat? Ein ganzes Gehirn ist 200.000-mal größer. Denk ist zuversichtlich: "Ich bin davon überzeugt, dass wir den automatisierten Prozess, den wir auch für das Netzhautstück verwendet haben – das "serial block-face" Elektronenmikroskop – so skalieren können, dass man damit ein ganzes Mäusegehirn dreidimensional abbilden kann. Auch wenn wir dazu ein oder zwei Jahre durchgehend Daten aufnehmen müssen." Er merkt jedoch an, dass es im Moment noch keine realistische Analysemethode für die Daten gibt. "Außer, es gibt uns jemand die zig Millarden Euro um die menschlichen Arbeitsstunden zu bezahlen", fügt er lachend hinzu. Helmstaedter hat für dieses Problem schon eine Idee – er setzt mit seiner Forschungsgruppe auf die Hilfe der Internetgemeinde: "Noch in diesem Jahr wollen wir mit dem Spiel Brainflight online gehen, in dem Internetnutzer auf der ganzen Welt Nervenbahnen nachfliegen und Punkte sammeln können. Gleichzeitig sagen uns ihre Entscheidungen etwas über die realen Verbindungen zwischen Nervenzellen." Heutige Algorithmen basieren oft auf maschinellem Lernen und werden daher immer besser werden, je mehr sie mit Trainingsdaten gefüttert werden. Die Daten der Internetspieler helfen somit auch bei der Entwicklung besserer Algorithmen für die computergestützte Datenanalyse.

Originalveröffentlichung:
Moritz Helmstaedter, Kevin L. Briggman, Srinivas C. Turaga, Viren Jain, H. Sebastian Seung, & Winfried Denk
Connectomic reconstruction of the inner plexiform layer in the mouse retina
Nature, 8. August 2013
== Diese und andere Bilder können in hoher Auflösung von den Kontaktpersonen bzw. ab dem 8.8. von der Webseite des MPI für Neurobiologie heruntergeladen werden. ==
Kontakt:
Dr. Moritz Helmstaedter
Struktur neokortikaler Schaltkreise
Max-Planck-Institut für Neurobiologie, Martinsried
Tel.: 089 8578 3690
Email: mhelmstaedter@neuro.mpg.de
Winfried Denk
Max-Planck Institut für Medizinische Forschung, Heidelberg.
Denk@mpimf-Heidelberg.mpg.de
Tel.: 06221 486 335
Dr. Stefanie Merker
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Neurobiologie, Martinsried
Tel.: 089 8578 - 3514
E-Mail: merker@neuro.mpg.de
www.neuro.mpg.de

Dr. Stefanie Merker | Max-Planck-Institut
Weitere Informationen:
http://www.neuro.mpg.de
http://www.neuro.mpg.de/helmstaedter

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zebras: Immer der Erinnerung nach
24.05.2017 | Senckenberg Forschungsinstitut und Naturmuseen

nachricht Wichtiges Regulator-Gen für die Bildung der Herzklappen entdeckt
24.05.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochspannung für den Teilchenbeschleuniger der Zukunft

24.05.2017 | Physik Astronomie

3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind

24.05.2017 | Physik Astronomie

Optisches Messverfahren für Zellanalysen in Echtzeit - Ulmer Physiker auf der Messe "Sensor+Test"

24.05.2017 | Messenachrichten