Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wissenschaftler der Freien Universität entschlüsseln Mechanismus eines optogenetischen Werkzeugs

24.04.2013
Wissenschaftler der Freien Universität Berlin, des Max-Planck-Instituts für Biophysik in Frankfurt am Main und der Universität Bielefeld haben die Funktionsweise des für die Steuerung von Zellen in Organismen verantwortlichen Proteins Kanalrhodopsin entschlüsselt.

Mithilfe der zeitaufgelösten Infrarotspektroskopie gelang ihnen ein einzigartiger Einblick in dessen Mechanismus. Die Wissenschaftler um den Biophysiker Prof. Dr. Joachim Heberle von der Freien Universität konnten dabei sogenannte Protonierungsreaktionen und Strukturveränderungen zeitlich und örtlich hochaufgelöst verfolgen.

Die Ergebnisse wurden in der jüngsten Ausgabe der renommierten Fachzeitschrift Proceedings of the National Academy of Science USA veröffentlicht. Die Erkenntnisse helfen nicht nur beim Verständnis des Funktionsmechanismus des Proteins Kanalrhodopsin. Vielmehr ermöglichen sie die gezielte Herstellung von Proteinvarianten mit verbesserten Eigenschaften, die in Zukunft auch in der Hirnforschung bei der Behandlung von Parkinson-Symptomen zur Anwendung kommen können.

Es war immer ein Traum von Wissenschaftlern, biologische Zellen oder sogar lebende Tiere mit der Hilfe von Licht steuern zu können. Durch ein Membranprotein, das dem Sehfarbstoff in unserem Auge ähnlich ist, wurde dieser Traum wahr: Das von den Wissenschaftlern analysierte Kanalrhodopsin erlaubt es, Nervenimpulse durch Licht auszulösen, und das in lebenden Organismen. Der molekulare Mechanismus dieses faszinierenden Proteins war trotz vielfacher Anwendungen war nicht geklärt gewesen.

Die Optogenetik ist ein neues Forschungsfeld, in dem lichtempfindliche Proteine eingesetzt werden, um Prozesse in einer biologischen Zelle zu kontrollieren. Das Kanalrhodopsin (engl. channelrhodopsin), das vor zehn Jahren von Prof. Dr. Peter Hegemann (Humboldt-Universität Berlin), Prof. Dr. Ernst Bamberg (Max-Planck-Institut für Biophysik, Frankfurt) und Prof. Dr. Georg Nagel (Universität Würzburg) entdeckt wurde, begründete dieses Gebiet. Das Kanalrhodopsin ist ein Protein, das in der Biomembran sitzt und nach Lichtanregung einen Kanal öffnet, um positiv geladene Teilchen (Kationen) durchzuschleusen. In einer biologischen Zelle wird dadurch ein Nervenimpuls ausgelöst. Anstatt wie früher üblich, mit Metallelektroden Nervenzellen zu erregen, ist es mit dem Kanalrhodopsin nun möglich, dies mit Licht zu bewerkstelligen, und zwar nicht-invasiv.

Diese Methode hat den unschätzbaren Vorteil, dass man die Nerven optisch und damit ferngesteuert erregen kann. Außerdem können mit genetischen Methoden nur bestimmte Zelltypen mit dem Protein Kanalrhodopsin versehen werden, sodass auch nur ganz bestimmte Zelltypen erregt werden. Insgesamt steht somit eine Methode zur Verfügung, die es erlaubt Zellen innerhalb eines komplexen Zellverbands sehr spezifisch mit der Hilfe von Licht zu adressieren, also durch Methoden der Optogenetik.

Da unser Gehirn auf der Basis von elektrischen Signalen und chemischen Botenstoffen funktioniert, kann mit diesem Werkzeug zum Verständnis der Gehirnfunktion auf molekularer Ebene beigetragen werden. Die Beantwortung von so grundsätzlichen Fragen, wie: Wie funktioniert unser Gedächtnis? oder: Wie kommt das Bewusstsein zustande? können damit zielgerichtet angegangen werden. Aufgrund der Bedeutung und der rasanten Entwicklung in der biomedizinischen Anwendung wurde die Optogenetik vom angesehenen Wissenschaftsmagazin „Nature Methods“ zur Methode des Jahres 2010 gewählt.

Den Forschern um Professor Joachim Heberle gelang es, wesentliche Teile des Mechanismus des Kanalrhodopsins auf atomare Ebene aufzuklären. Sie setzten dafür die zeitaufgelöste Infrarot-Spektroskopie ein, um die Strukturänderungen dieser molekularen Maschine zu verfolgen. Das Resultat: Die Anregung mit blauem Licht löst Strukturänderungen in dem Protein aus, die zu einer zeitlich exakten Abfolge von Protonenverschiebungen innerhalb des Proteins führt. Diese Ladungsverschiebungen dirigieren das Öffnen und Schließen des lichtaktivierten Ionenkanals und somit die Steuerung der Nervenzelle. Wo im Protein und wie schnell diese Reaktionen ablaufen, konnte mithilfe hochmoderner biophysikalischer Methoden gezeigt werden.

Die Arbeiten wurden durch die Deutsche Forschungsgemeinschaft im Rahmen einer Forschergruppe (FOR 1279 „Protein-based Photoswitches as optogenetic tools“) und eines Sonderforschungsbereichs (SFB 1078 „Proteinfunktion durch Protonierungsdynamik“) gefördert. In dem neu bewilligten Sonderforschungsbereich an der Freien Universität beschäftigen sich Physiker, Chemiker und Biologen aus den drei Berliner Universitäten mit der Frage, welche Rolle der Protonentransfer beim Funktionsmechanismus von Proteinen spielt. Die Resultate, die nun am Kanalrhodopsin erhalten wurden, repräsentieren somit einen Meilenstein in diesem Forschungsprogramm.

Literatur
Lórenz-Fonfría, V.A., Resler, T., Krause, N., Nack, M., Gossing, M., Fischer von Mollard, G., Bamann, C., Bamberg, E., Schlesinger, R., and Heberle, J. (2013):
„Transient protonation changes in channelrhodopsin-2 and their relevance to channel gating”
Proc. Natl. Acad. Sci USA 110 (14), E1273-E1281, Fachartikelnummer DOI: 10.1073/pnas.1219502110

Weitere Informationen
Prof. Dr. Joachim Heberle, Institut für Physik der Freien Universität Berlin, Tel. 030 / 838-53337, E-Mail: joachim.heberle@fu-berlin.de

Carsten Wette | idw
Weitere Informationen:
http://www.fu-berlin.de
http://www.physik.fu-berlin.de/en/einrichtungen/ag/ag-heberle/index.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Bakterieller Untermieter macht Blattnahrung für Käfer verdaulich
17.11.2017 | Max-Planck-Institut für chemische Ökologie

nachricht Neues Werkzeug für gezielten Proteinabbau
17.11.2017 | Max-Planck-Institut für biophysikalische Chemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Pflanzenvielfalt von Wäldern aus der Luft abbilden

Produktivität und Stabilität von Waldökosystemen hängen stark von der funktionalen Vielfalt der Pflanzengemeinschaften ab. UZH-Forschenden gelang es, die Pflanzenvielfalt von Wäldern durch Fernerkundung mit Flugzeugen in verschiedenen Massstäben zu messen und zu kartieren – von einzelnen Bäumen bis hin zu ganzen Artengemeinschaften. Die neue Methode ebnet den Weg, um zukünftig die globale Pflanzendiversität aus der Luft und aus dem All zu überwachen.

Ökologische Studien zeigen, dass die Pflanzenvielfalt zentral ist für das Funktionieren von Ökosys-temen. Wälder mit einer höheren funktionalen Vielfalt –...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

Roboter für ein gesundes Altern: „European Robotics Week 2017“ an der Frankfurt UAS

17.11.2017 | Veranstaltungen

Börse für Zukunftstechnologien – Leichtbautag Stade bringt Unternehmen branchenübergreifend zusammen

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungsnachrichten

IHP präsentiert sich auf der productronica 2017

17.11.2017 | Messenachrichten

Roboter schafft den Salto rückwärts

17.11.2017 | Innovative Produkte