Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wissenschaftler der Freien Universität entschlüsseln Mechanismus eines optogenetischen Werkzeugs

24.04.2013
Wissenschaftler der Freien Universität Berlin, des Max-Planck-Instituts für Biophysik in Frankfurt am Main und der Universität Bielefeld haben die Funktionsweise des für die Steuerung von Zellen in Organismen verantwortlichen Proteins Kanalrhodopsin entschlüsselt.

Mithilfe der zeitaufgelösten Infrarotspektroskopie gelang ihnen ein einzigartiger Einblick in dessen Mechanismus. Die Wissenschaftler um den Biophysiker Prof. Dr. Joachim Heberle von der Freien Universität konnten dabei sogenannte Protonierungsreaktionen und Strukturveränderungen zeitlich und örtlich hochaufgelöst verfolgen.

Die Ergebnisse wurden in der jüngsten Ausgabe der renommierten Fachzeitschrift Proceedings of the National Academy of Science USA veröffentlicht. Die Erkenntnisse helfen nicht nur beim Verständnis des Funktionsmechanismus des Proteins Kanalrhodopsin. Vielmehr ermöglichen sie die gezielte Herstellung von Proteinvarianten mit verbesserten Eigenschaften, die in Zukunft auch in der Hirnforschung bei der Behandlung von Parkinson-Symptomen zur Anwendung kommen können.

Es war immer ein Traum von Wissenschaftlern, biologische Zellen oder sogar lebende Tiere mit der Hilfe von Licht steuern zu können. Durch ein Membranprotein, das dem Sehfarbstoff in unserem Auge ähnlich ist, wurde dieser Traum wahr: Das von den Wissenschaftlern analysierte Kanalrhodopsin erlaubt es, Nervenimpulse durch Licht auszulösen, und das in lebenden Organismen. Der molekulare Mechanismus dieses faszinierenden Proteins war trotz vielfacher Anwendungen war nicht geklärt gewesen.

Die Optogenetik ist ein neues Forschungsfeld, in dem lichtempfindliche Proteine eingesetzt werden, um Prozesse in einer biologischen Zelle zu kontrollieren. Das Kanalrhodopsin (engl. channelrhodopsin), das vor zehn Jahren von Prof. Dr. Peter Hegemann (Humboldt-Universität Berlin), Prof. Dr. Ernst Bamberg (Max-Planck-Institut für Biophysik, Frankfurt) und Prof. Dr. Georg Nagel (Universität Würzburg) entdeckt wurde, begründete dieses Gebiet. Das Kanalrhodopsin ist ein Protein, das in der Biomembran sitzt und nach Lichtanregung einen Kanal öffnet, um positiv geladene Teilchen (Kationen) durchzuschleusen. In einer biologischen Zelle wird dadurch ein Nervenimpuls ausgelöst. Anstatt wie früher üblich, mit Metallelektroden Nervenzellen zu erregen, ist es mit dem Kanalrhodopsin nun möglich, dies mit Licht zu bewerkstelligen, und zwar nicht-invasiv.

Diese Methode hat den unschätzbaren Vorteil, dass man die Nerven optisch und damit ferngesteuert erregen kann. Außerdem können mit genetischen Methoden nur bestimmte Zelltypen mit dem Protein Kanalrhodopsin versehen werden, sodass auch nur ganz bestimmte Zelltypen erregt werden. Insgesamt steht somit eine Methode zur Verfügung, die es erlaubt Zellen innerhalb eines komplexen Zellverbands sehr spezifisch mit der Hilfe von Licht zu adressieren, also durch Methoden der Optogenetik.

Da unser Gehirn auf der Basis von elektrischen Signalen und chemischen Botenstoffen funktioniert, kann mit diesem Werkzeug zum Verständnis der Gehirnfunktion auf molekularer Ebene beigetragen werden. Die Beantwortung von so grundsätzlichen Fragen, wie: Wie funktioniert unser Gedächtnis? oder: Wie kommt das Bewusstsein zustande? können damit zielgerichtet angegangen werden. Aufgrund der Bedeutung und der rasanten Entwicklung in der biomedizinischen Anwendung wurde die Optogenetik vom angesehenen Wissenschaftsmagazin „Nature Methods“ zur Methode des Jahres 2010 gewählt.

Den Forschern um Professor Joachim Heberle gelang es, wesentliche Teile des Mechanismus des Kanalrhodopsins auf atomare Ebene aufzuklären. Sie setzten dafür die zeitaufgelöste Infrarot-Spektroskopie ein, um die Strukturänderungen dieser molekularen Maschine zu verfolgen. Das Resultat: Die Anregung mit blauem Licht löst Strukturänderungen in dem Protein aus, die zu einer zeitlich exakten Abfolge von Protonenverschiebungen innerhalb des Proteins führt. Diese Ladungsverschiebungen dirigieren das Öffnen und Schließen des lichtaktivierten Ionenkanals und somit die Steuerung der Nervenzelle. Wo im Protein und wie schnell diese Reaktionen ablaufen, konnte mithilfe hochmoderner biophysikalischer Methoden gezeigt werden.

Die Arbeiten wurden durch die Deutsche Forschungsgemeinschaft im Rahmen einer Forschergruppe (FOR 1279 „Protein-based Photoswitches as optogenetic tools“) und eines Sonderforschungsbereichs (SFB 1078 „Proteinfunktion durch Protonierungsdynamik“) gefördert. In dem neu bewilligten Sonderforschungsbereich an der Freien Universität beschäftigen sich Physiker, Chemiker und Biologen aus den drei Berliner Universitäten mit der Frage, welche Rolle der Protonentransfer beim Funktionsmechanismus von Proteinen spielt. Die Resultate, die nun am Kanalrhodopsin erhalten wurden, repräsentieren somit einen Meilenstein in diesem Forschungsprogramm.

Literatur
Lórenz-Fonfría, V.A., Resler, T., Krause, N., Nack, M., Gossing, M., Fischer von Mollard, G., Bamann, C., Bamberg, E., Schlesinger, R., and Heberle, J. (2013):
„Transient protonation changes in channelrhodopsin-2 and their relevance to channel gating”
Proc. Natl. Acad. Sci USA 110 (14), E1273-E1281, Fachartikelnummer DOI: 10.1073/pnas.1219502110

Weitere Informationen
Prof. Dr. Joachim Heberle, Institut für Physik der Freien Universität Berlin, Tel. 030 / 838-53337, E-Mail: joachim.heberle@fu-berlin.de

Carsten Wette | idw
Weitere Informationen:
http://www.fu-berlin.de
http://www.physik.fu-berlin.de/en/einrichtungen/ag/ag-heberle/index.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Adenoviren binden gezielt an Strukturen auf Tumorzellen
23.04.2018 | Eberhard Karls Universität Tübingen

nachricht Software mit Grips
20.04.2018 | Max-Planck-Institut für Hirnforschung, Frankfurt am Main

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Moleküle brillant beleuchtet

Physiker des Labors für Attosekundenphysik, der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik haben eine leistungsstarke Lichtquelle entwickelt, die ultrakurze Pulse über einen Großteil des mittleren Infrarot-Wellenlängenbereichs generiert. Die Wissenschaftler versprechen sich von dieser Technologie eine Vielzahl von Anwendungen, unter anderem im Bereich der Krebsfrüherkennung.

Moleküle sind die Grundelemente des Lebens. Auch wir Menschen bestehen aus ihnen. Sie steuern unseren Biorhythmus, zeigen aber auch an, wenn dieser erkrankt...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Metalle verbinden ohne Schweißen

Kieler Prototyp für neue Verbindungstechnik wird auf Hannover Messe präsentiert

Schweißen ist noch immer die Standardtechnik, um Metalle miteinander zu verbinden. Doch das aufwändige Verfahren unter hohen Temperaturen ist nicht überall...

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Fraunhofer eröffnet Community zur Entwicklung von Anwendungen und Technologien für die Industrie 4.0

23.04.2018 | Veranstaltungen

Mars Sample Return – Wann kommen die ersten Gesteinsproben vom Roten Planeten?

23.04.2018 | Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Moleküle brillant beleuchtet

23.04.2018 | Physik Astronomie

Sauber und effizient - Fraunhofer ISE präsentiert Wasserstofftechnologien auf Hannover Messe

23.04.2018 | HANNOVER MESSE

Fraunhofer IMWS entwickelt biobasierte Faser-Kunststoff-Verbunde für Leichtbau-Anwendungen

23.04.2018 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics