Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wissenschaftler erforschen an Fruchtfliegen, wie Nervenzellen Reize wahrnehmen

08.08.2017

Sensorische Nervenzellen haben die Aufgabe, Reize unserer Umwelt wahrzunehmen und an das Gehirn weiterzuleiten. Nun haben Wissenschaftler der Universitäten Leipzig und Würzburg erstmals am Tiermodell der Fruchtfliege beobachten können, wie eine bisher wenig erforschte Klasse von Rezeptorproteinen als molekulare Antennen für die Wahrnehmung von mechanischen Reizen in die Kommunikation von Nervenzellen eingreift. Ihre aktuellen Forschungsergebnisse veröffentlichen die Wissenschaftler jetzt in der Fachzeitschrift eLife.

Eine Fruchtfliege hat ungefähr 250.000 Nervenzellen. Im Vergleich dazu besteht allein das menschliche Gehirn aus knapp 100 Milliarden Neuronen. Ihnen gemein ist jedoch eine ähnliche Sprache.


„Die rasterelektronenmikroskopische Aufnahme einer Drosophila melanogaster (Taufliege)

Prof. Dr. Tobias Langenhan

"Um diese Zellsprache besser verstehen zu können, forschen wir seit Jahren an der Fruchtfliege Drosophila melanogaster, die uns im Alltag als Obstfliege begegnet", erläutert Prof. Dr. Tobias Langenhan vom Rudolf-Schönheimer-Institut für Biochemie der Universität Leipzig. "Nun konnten wir wichtige Details der Kommunikation von sensorischen Nervenzellen entschlüsseln und den zugrundeliegenden molekularen Mechanismus in der jetzt vorliegenden Studie beschreiben."

Neurophysiologe Dr. Robert Kittel von der Universität Würzburg ist wie Professor Langenhan gleichberechtigter Hauptautor der Studie. Gemeinsam entwickelten sie für die Untersuchungen eine Methode, mit der die Forscher in das Nervensystem der Fruchtfliegenlarven eindringen und der Sprache der Nervenzellen "zuhören" können.

Die Arbeitsgruppe, zu der auch die Erstautorin Nicole Scholz gehört, benutzten diese Technologie dann, um die molekularen Grundlagen der Nervenzellkommunikation besser zu verstehen. Sie nutzten experimentelle Techniken, um Gene auszuschalten oder umzuprogrammieren.

"Die von uns untersuchten Sinneswahrnehmungen basieren auf bestimmten Rezeptormolekülen, die schon seit Beginn des mehrzelligen Lebens auf der Erde existieren. Etliche Zelltypen - wenn nicht sogar alle - rüsten sich durch diese Rezeptoren aus, die wie Messfühler auf mechanische Reize reagieren. Sie werden dadurch ausgestattet mit einem Sinn für die Wahrnehmung von Druck, Zug, Spannung oder sogar Geräuschen und Tönen", so Langenhan.

Im Fokus der Forschungen stehen die Rezeptoren einer bestimmten Molekülfamilie. Sie werden als Adhäsions-G-Protein-gekoppelte Rezeptoren (Adhäsions-GPCR) bezeichnet. Diese Moleküle sitzen auf der Oberfläche von Zellen und können an benachbarte Zellen oder Material anhaften, ähnlich wie Klettverschlüsse. Gleichzeitig sind diese Klettverschlüsse gekoppelt mit Schaltern, die ein äußeres Signal in eine biologische Information übersetzen und ins Zellinnere leiten können.

So tragen die Rezeptoren dazu bei, dass äußere mechanische Reize wie Berührungen oder Druck wahrgenommen werden. Diese Informationen benutzen Lebewesen wie Fruchtfliegen oder Menschen, um beispielsweise die Bewegungen ihrer Gliedmaßen korrekt steuern zu können. Kittel und Langenhan fanden bei den aktuellen Untersuchungen überraschenderweise heraus, dass der Rezeptor Latrophilin/CIRL bei der Übertragung von mechanischen Signalen wie der Lautstärkeregler an der Stereoanlage funktioniert. Er verstärkt die Wahrnehmung des Signals, das von außen kommt.

Die Molekülfamilie, zu der auch Adhäsions-GPCR zählen, sind zu Hunderten im menschlichen Erbgut kodiert. Demzufolge liefern die aktuellen Studienergebnisse einen wichtigen Beitrag zur Grundlagenforschung dieser Zellantennen. Rund die Hälfte aller verschreibungspflichtigen Medikamente wirken auf diese Rezeptoren. So können sie beispielsweise bei Bluthochdruck, Asthma oder Morbus Parkinson helfen.

"Das Wissen um diese molekularen Mechanismen - wie die nun entschlüsselte Wirkungsweise des Latrophilin-Rezeptors - erklärt uns, wie Leben funktioniert. Forschen kann man oft präziser an Bakterien oder weniger komplexen Tieren als dem Menschen und doch sind die gewonnen Erkenntnisse auf ihn anwendbar. Daher braucht gute Medizin eine exzellente Grundlagenforschung. Denn nur wer weiß, wie Lebensprozesse im Gesunden ablaufen, kann verstehen, wie sie im Defekt Krankheit verursachen können", erklärt Langenhan seine Faszination an dem Forschungsgebiet.

Wichtige Beiträge zur aktuellen Studie lieferten auch Langenhans Leipziger Kollegin Dr. Simone Prömel, und die Würzburger Wissenschaftler Isabella Maiellaro, Georg Nagel, Markus Sauer und Esther Asan.

Die neuen Studienerkenntnisse sind für die Entwicklung zukünftiger Therapieformen von richtungsweisender Bedeutung. Sie können künftig eine Rolle spielen beispielsweise in der pharmakologischen Behandlung von Frühgeborenen, die oft eine unreife Lunge besitzen oder auch bei der Entwicklung von Therapien für die Behandlung von Krebs. Dafür sind noch viele Forschungen im Bereich der Zellkommunikation durch Adhäsions-GPCR notwendig.

Diese Schwerpunktarbeiten sind in der Universität Leipzig im Forschungsprofilbereich "Molekulare und zelluläre Kommunikation in Therapie und Diagnostik" verankert. Mit dem Amtsantritt von Prof. Dr. Tobias Langenhan im Oktober 2016 an der Medizinischen Fakultät wurde dieser Bereich weiter gestärkt und ausgebaut.

Langenhan ist Lehrstuhlinhaber für Allgemeine Biochemie am Rudolf-Schönheimer-Institut und Sprecher der Forschergruppe FOR 2149 der Deutschen Forschungsgemeinschaft (DFG), die sich mit dem Signalverhalten der Adhäsions-GPCR befasst und in der die vorliegenden Ergebnisse erarbeitet wurden. Das aktuelle Forschungsprojekt wurde von der DFG unterstützt.

Originaltitel der Veröffentlichung im Fachmagazin eLife: "Mechano-dependent signaling by Latrophilin/CIRL quenches cAMP in proprioceptive neurons"

DOI: 10.7554/eLife.28360
https://elifesciences.org/articles/28360

Peggy Darius | Universität Leipzig
Weitere Informationen:
http://www.uni-leipzig.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Überleben auf der Schneeball-Erde
21.09.2017 | Max-Planck-Institut für Biogeochemie, Jena

nachricht Hochpräzise Verschaltung in der Hirnrinde
21.09.2017 | Max-Planck-Institut für Hirnforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Granulare Materie blitzschnell im Bild

21.09.2017 | Verfahrenstechnologie

Hochpräzise Verschaltung in der Hirnrinde

21.09.2017 | Biowissenschaften Chemie

Überleben auf der Schneeball-Erde

21.09.2017 | Biowissenschaften Chemie