Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wissenschaftler entschlüsseln, wie Antikörper funktionieren

24.02.2012
Antikörper sind für den Menschen lebensnotwendig: Sie vernichten Krankheitserreger und können deswegen in der Medizin zum Beispiel bei Therapien gegen Krebs eingesetzt werden.

Doch ihre Zerstörungsmechanismen richten sich manchmal auch gegen den eigenen Körper. Autoimmunerkrankungen wie Multiple Sklerose oder Rheumatoide Arthritis sind die Folge. Wissenschaftler vom Lehrstuhl für Genetik der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) haben jetzt herausgefunden, wie Antikörper funktionieren und was sie steuert.


Abgebildet ist ein Ausschnitt der Kristallstruktur eines Antikörper-Moleküls. Man sieht die Interaktion eines Antikörpermoleküls (blau) mit einem Fc-Rezeptor (grün). Fc-Rezeptoren sind Eiweißmoleküle auf der Oberfläche von Monozyten, welche für die Funktion von Antikörpern essentiell sind. Abbildung: Dr. Peter Sondermann

Ihre Erkenntnisse könnten zum einen die Grundlage für die Entwicklung von noch gezielteren Therapien zur Bekämpfung von Krebs bilden. Zum anderen bieten sie neue Ansätze für die Behandlung von Autoimmunerkrankungen. Die Forscher haben ihre Ergebnisse in dem international renommierten Fachjournal „Immunity“ veröffentlicht1.

„Antikörper sind Eiweißmoleküle, und wir unterscheiden grundsätzlich zwei Arten“, erläutert Prof. Dr. Falk Nimmerjahn, Inhaber des Lehrstuhls für Genetik an der FAU, der das Forscherteam leitet. „Auf der einen Seite gibt es die Antikörper mit für uns positiven Eigenschaften, die zum Beispiel in der Krebstherapie eingesetzt werden. Zum anderen gibt es die so genannten Auto-Antikörper, die den eigenen Körper angreifen und Krankheiten wie systemischen Lupus erythematodes auslösen.“ Eine der wichtigsten Erkenntnisse der vergangenen Jahre war, dass beide Formen von Antikörpern von denselben molekularen und zellulären Mechanismen gesteuert werden.

Der menschliche Körper selbst ist in der Lage Antikörper zu produzieren, die jede beliebige Zellform – zum Beispiel Tumorzellen – zerstören können. Die moderne Medizin macht sich diese Fähigkeit des Körpers bereits heute zunutze: Experten können die Zellen, die die Antikörper produzieren, isolieren und in Zellkulturen halten. Dort produzieren die Zellen dann weiter Antikörper, die von Medizinern entnommen und anschließend über eine Infusion oder Injektion zurück in den Körper des Patienten geleitet werden, wo sie ihre therapeutische Wirkung entfalten. Aufgrund ihrer geringen Größe wandern die Antikörper automatisch in nahezu jedes Gewebe. Für die Ärzte hat das den Vorteil, dass sie die Antikörper nicht direkt in einen oder mehrere Tumore spritzen müssen.

Unklar war bislang, wie die Antikörper es schaffen, fast alle Zellformen zu vernichten. In der Forschung galt bislang die These, dass sie mit sogenannten Fresszellen oder „natürlichen Killerzellen“ interagieren. Doch Dr. Markus Biburger und Susanne Aschermann vom Lehrstuhl für Genetik wiesen nach, dass für die Funktion der Antikörper eine ganz andere Zellpopulation verantwortlich ist: die sogenannten Monozyten. Wenn sie am Modell die Monozyten entfernt hatten, konnten Antikörper weder eine therapeutische Wirkung gegen Krebs entfalten, noch konnten Auto-Antikörper die eigenen Zellen angreifen. „Unsere Erkenntnisse liefern zahlreiche Ansätze, um Tumortherapien zu optimieren und Autoimmunerkrankungen besser bekämpfen zu können“, sagt Prof. Nimmerjahn. „Somit haben wir gleich zwei Fliegen mit einer Klappe geschlagen.“

1Biburger et al., Monocyte Subsets Responsible for Immunoglobulin G-Dependent Effector Functions In Vivo, Immunity (2011), doi:10.1016/j.immuni.2011.11.009

Die Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), gegründet 1743, ist mit 33.500 Studierenden, 630 Professuren und rund 12.000 Mitarbeiterinnen und Mitarbeitern die größte Universität in Nordbayern. Und sie ist, wie aktuelle Erhebungen zeigen, eine der erfolgreichsten und forschungsstärksten. So liegt die FAU beispielsweise beim aktuellen Forschungsranking der Deutschen Forschungsgemeinschaft (DFG) auf Platz 8 und gehört damit in die Liga der deutschen Spitzenuniversitäten. Neben dem Exzellenzcluster „Engineering of Advanced Materials“ (EAM9 und der im Rahmen der Exzellenzinitiative eingerichteten Graduiertenschule „School of Advanced Optical Technologies“ (SAOT) werden an der FAU derzeit 31 koordinierte Programme von der DFG gefördert

Die Friedrich-Alexander-Universität bietet insgesamt 142 Studiengänge an, darunter sieben Bayerische Elite-Master-Studiengänge und über 30 mit dezidiert internationaler Ausrichtung. Keine andere Universität in Deutschland kann auf ein derart breit gefächertes und interdisziplinäres Studienangebot auf allen Qualifikationsstufen verweisen. Durch über 500 Hochschulpartnerschaften in 62 Ländern steht den Studierenden der FAU schon während des Studiums die ganze Welt offen.

Weitere Informationen für die Medien:

Prof. Dr. Falk Nimmerjahn
Tel.: 09131/85-28494
fnimmerj@biologie.uni-erlangen.de

Dr. Pascale Anja Dannenberg | idw
Weitere Informationen:
http://www.uni-erlangen.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Besser lernen dank Zink?
23.03.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Raben: "Junggesellen" leben in dynamischen sozialen Gruppen
23.03.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen