Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wissenschaftler entdecken den Ursprung einer Riesensynapse im Hörsystem

24.06.2013
Wie lokalisieren wir eine Geräuschquelle? Woher weiß unser Gehirn, wo genau in einem Raum der Ursprung dieses Geräuschs ist?

Verantwortlich dafür ist eine Riesenynapse im Gehirn, die eine effektive und zeitgenaue Verarbeitung von Hörinformationen möglich macht. Wissenschaftler der ETH Lausanne (EPFL) haben im Rahmen des Schwerpunktprogramms SPP 1608 der Deutschen Forschungsgemeinschaft (DFG) nun den Mechanismus offen gelegt, der das Wachstum dieser Synapse antreibt. Das Schwerpunktprogramm wird an der Technischen Universität Kaiserslautern von Professor Eckhard Friauf koordiniert www.pp1608.com).

Mit einer bemerkenswerten Genauigkeit können Menschen wie auch die meisten Säugetiere den Ursprung eines Geräuschs lokalisieren. Diese Fähigkeit begleitet uns den ganzen Tag über – sei es beim Überqueren der Straße oder bei der Ortung eines klingelnden Handys.

Das Gehirn benutzt für die Ortung einer Schallquelle den Zeit- und Intensitätsunterschied des ankommenden Schallsignals zwischen beiden Ohren. Dazu muss die Hörinformation des jeweils gegenüberliegenden Ohres rasch auf die andere Seite des Gehirns übermittelt werden.In dieser Verbindung spielt eine Riesensynapse, an der Informationen erstaunlich schnell - in weniger als 1/1000 Sekunde - übertragen werden können, eine wesentliche Rolle.

Das Team um Professor Ralf Schneggenburger hat nun die Rolle eines bestimmten Proteins entschlüsselt, welches das Wachstum dieser gigantischen Synapse anstößt. Diese Entdeckung könnte auch der Erforschung einer Reihe neuropsychiatrischer Krankheiten dienen.

Riesenynapsen ermöglichen schnellere Kommunikation

Normalerweise empfangen Neuronen tausende von Kontaktpunkten – bekannt unter der Bezeichnung Synapse – von vorgeschalteten Neuronen. Innerhalb eines bestimmten Zeitfensters muss ein Neuron mehrere erregende synaptische Signale erhalten, um selbst einen elektrischen Impuls aussenden zu können. So kommt es, dass der Informationsaustausch zwischen den Neuronen in vielen Teilen des Gehirns relativ zufällig.

Im auditorischen Teil des Hirns ist dies anders. Synapsen wachsen oft bis zu einer extremen Größe heran: Diese Riesensynapsen heißen Held'sche Calyxsynapsen nach ihrem Entdecker Hans Held, Leipziger Anatom vor mehr als 100 Jahren. Da sie über mehrere hunderte von Kontaktpunkten verfügen, sind sie in der Lage auch ein Signal allein zu ihrem nachgeschalteten Neuron zu senden. „Es ist fast wie eine Eins-zu-eins-Kommunikation zwischen den Neuronen“, erklärt EPFL-Professor Ralf Schneggenburger, Leiter der Studie. So können Informationen extrem schnell innerhalb einer Millisekunde verarbeitet werden, während dies in den meisten anderen Neuronenschaltungen mehr als 10 Millisekunden braucht.

Die Bestimmung des Proteins

Zur Isolierung des Proteins, welches für die Wachstumskontrolle des Heldischen Calyx verantwortlich ist, war akribische Forschung notwendig. Die Forscher begannen mit Genexpressionsanalysen bei Mäusen, um unter den ca. 20.000 Genen einer Maus die wesentlich beteiligten Proteine zu identifizieren. Sie fanden Hinweise für die Rolle von sogenannten Proteinen der "BMP" Famile ("bone morphogenetic proteins").

Um sicher zu sein, das richtige Protein ausfindig gemacht zu haben, schalteten die Forscher BMP-Proteinrezeptoren im auditiven Teil der Mäusehirne ab. "Das elektrophysiologische Signal des Held'schen Calyx war signifikant verändert", erklärt Le Xiao, Erstautorin der Studie. "Dies legte einen großen anatomischen Unterschied nahe."

Anschließend rekonstruierten die Wissenschaftler die Synapse dreidimensional aus Ultradünnschnitten, die unter dem Elektronenmikroskop beobachtet wurden. Anstelle eines großen Held'schen Calyx, der fast die Hälfte des Neurons umfasst, zeigte die 3D-Aufnahme des Neurons mehrere kleine Synapsen. "Das zeigt, dass der Ablauf, in welcher das BMP-Protein eingebunden ist, nicht nur das Wachstum einer Synapse beeinflusst, sondern auch eine Auswahl durch Unterbindung der anderen Synapsen vollzieht", erklärt Schneggenburger.

Synaptische Verbindung - der Schlüssel zu manchem psychiatrischem Puzzle

Die Studie macht einen ersten Schritt zum Verständnis der molekularen Abläufe während der Entwicklung der ungewöhnlich großen Calyxsynapsen im Hörsystem von Mäusen. Ein besseres Verständnis der molekularen Mechanismen der Synapsenentwicklung könnte wichtig sein für die zukünftige Entschlüsselung von zentralnervöser Schwerhörigkeit, die z.Zt. nur wenig verstanden ist. Die Ergebnisse zeigen auch, dass das BMP-Protein ebenfalls eine wichtige Rolle bei der Entstehung von synaptischen Verbindungen im Gehirn von Säugetieren spielt. Schneggenburger und seine Kollegen forschen derzeit an seiner Rolle in anderen Bereichen des Gehirns. "Manche neuropsychiatrische Erkrankung wie bspw. Schizophrenie und Autismus sind durch die abnormale Entwicklung von synaptischer Konnektivität in verschiedenen Bereichen des Gehirns charakterisiert“, erklärt Schneggenburger. Durch die Identifizierung und Erklärung der Rolle verschiedener Proteine in dieser Entwicklung hoffen die Wissenschaftler, mehr Licht in diese schlecht verstandene Erkrankungen zu bringen.

Thomas Jung | idw
Weitere Informationen:
http://www.pp1608.com
http://www.uni-kl.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Designerviren stacheln Immunabwehr gegen Krebszellen an
26.05.2017 | Universität Basel

nachricht Wachstumsmechanismus der Pilze entschlüsselt
26.05.2017 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG fördert 15 neue Sonderforschungsbereiche (SFB)

26.05.2017 | Förderungen Preise

Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

26.05.2017 | Biowissenschaften Chemie

Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um

26.05.2017 | Gesellschaftswissenschaften