Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wissenschaftler des iba Heiligenstadt e.V. entwickelten 3D-Stützstrukturen für Knochenregeneration

25.01.2016

Etwa 33 % der Frauen und 12,5 % der Männer über 50 erleiden eine Knochenfraktur aufgrund von Osteoporose. Gerade bei dieser Patientengruppe ist die Selbstheilung derartiger Defekte langwierig bzw. oft nicht möglich. Daher ist die Entwicklung innovativer Materialien für den Knochenersatz seit vielen Jahren ein extrem wichtiges Thema in der Biomaterialforschung. Dreidimensionale Zellträgerstrukturen stellen eine innovative Therapiemöglichkeit für Knochendefekte dar. Prozesse wie die Zellproliferation und die Zelldifferenzierung lassen sich hierbei über die definierte Einstellung struktureller und geometrischer Eigenschaften beeinflussen.

Internationales Forschungsprojekt mit namhaften Forschungspartnern aus 8 Ländern am Institut für Bioprozess- und Analysenmesstechnik in Heilbad Heiligenstadt abgeschlossen.


Prinzip der Entwicklung von Knochenersatzmaterialien im EU-Projekt InnovaBone

Die 2-Photonenpolymerisation ist ein innovatives Rapid-Prototyping-Verfahren zur Herstellung von 3D-Stützstrukturen für die Knochenreparatur. Grundlage dieser Technik ist die Wechselwirkung hochenergetischer Laserstrahlung mit photoaktiven Molekülen wodurch eine Polymerisation induziert wird. Die Laserstrahlung wird mit Hilfe eines Objektivs fokussiert.

Nur in diesem Fokuspunkt, der einen Durchmesser von ca. 1/4000 mm hat, erfolgt die Polymerisation und damit eine Verfestigung der Substanz innerhalb einer hochviskosen Flüssigkeit zu einem Feststoff. Wird der Fokuspunkt entsprechend eines 3D-Modells durch die Probe bewegt, entstehen dreidimensionale Strukturen, deren geometrische Eigenschaften nach Bedarf eingestellt werden können.

Im Rahmen des EU-Projektes InnovaBone wurden in der Arbeitsgruppe von Prof. Dr. Klaus Liefeith in Zusammenarbeit mit 8 Forschungseinrichtungen und 6 Industrieunternehmen aus 8 Ländern Zellträgerstrukturen (sogenannte Scaffolds) für den Knochenersatz entwickelt.

Als Ausgangsmaterial wurde dabei ein biokompatibles, d.h. körperverträgliches bioabbaubares, photoreaktives Copolymer (langkettiges Molekül bestehend aus mehreren Wiederholungseinheiten) auf Caprolacton- und Lactid-Basis verwendet. Durch Variation des Anteils der beiden Monomere konnten die mechanischen Eigenschaften des fertigen Scaffolds gezielt eingestellt werden. Dabei erfolgte die Strukturierung des Ausgangsmaterials mittels der 2-Photonenpolymerisation.

Im Ergebnis liegen patientenspezifische (auf den jeweiligen Patienten zugeschnittene) Implantate vor. Umfassende morphologische (Rasterelektronenmikroskopie) und mechanische Testungen zeigten, dass 3-D-Zellträgerstrukturen generiert werden konnten, welche sehr gut für die Anwendung als Knochenersatzmaterialien geeignet sind. Zudem zeigten erste zellbiologische Testungen die exzellenten Eigenschaften und die gute Verträglichkeit mit dem Empfängerorganismus.

Um eine optimale Akzeptanz der Scaffolds gegenüber humanen Zellen zu gewährleisten erfolgte die Befüllung der Scaffolds mit einem bio-aktiven Gel in Verbindung mit Calciumphosphat Nanopartikeln (CaP-NP). Letzteres diente zur Erhöhung des Kontrastes für die spätere klinische Diagnostik mittels Computertomographie. Die knochbildungsfördernden Eigenschaften des Materials wurden durch klinische Untersuchungen in Zusammenarbeit mit der Medizinischen Universität in Wien nachgewiesen.

Beteiligt waren an dem Projekt so namenhafte Partner wie die Medizinische Universität in Wien, die beispielsweise die knochbildungsfördernden Eigenschaften des Materials nachgewiesen hat, die Universität in Wien, die Baxter Innovations GmbH (Wien), University of Nottingham und University of Cambridge (Großbritanien), Universidad de Valladolid und Universitat Politècnica de Catalunya Barcelona (Spanien), das Centre Suisse d´Electronique et de Microtechnique SA (Neuchatel, Schweiz), Moverim Consulting sprl (Brüssel, Belgien), Promoscience (Trieste, Italien), Qserve Consultancy BV (Amsterdam, Niederlande), TETRA Gesellschaft für Sensorik Robotik und Automation mbH (Ilmenau), die Universitätsmedizin Göttingen sowie das Institut für Bioprozess- und Analysemesstechnik Heilbad Heiligenstadt.

Weiterführende Informationen:
Prof. Dr. Klaus Liefeith, Institut für Bioprozess- und Analysenmesstechnik e.V.,
Tel: 03606/671500, Email: klaus.liefeith@iba-heiligenstadt.de

Sebastian Kaufhold | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.iba-heiligenstadt.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neue Einblicke in die Welt der Trypanosomen
16.08.2017 | Julius-Maximilians-Universität Würzburg

nachricht Geographie verrät das Alter von Viren
16.08.2017 | Universität Bern

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Wissenschaftler beleuchten den „anderen Hochtemperatur-Supraleiter“

Eine von Wissenschaftlern des Max-Planck-Instituts für Struktur und Dynamik der Materie (MPSD) geleitete Studie zeigt, dass Supraleitung und Ladungsdichtewellen in Verbindungen der wenig untersuchten Familie der Bismutate koexistieren können.

Diese Beobachtung eröffnet neue Perspektiven für ein vertieftes Verständnis des Phänomens der Hochtemperatur-Supraleitung, ein Thema, welches die Forschung der...

Im Focus: Tests der Quantenmechanik mit massiven Teilchen

Quantenmechanische Teilchen können sich wie Wellen verhalten und mehrere Wege gleichzeitig nehmen, um an ihr Ziel zu gelangen. Dieses Prinzip basiert auf Borns Regel, einem Grundpfeiler der Quantenmechanik; eine mögliche Abweichung hätte weitreichende Folgen und könnte ein Indikator für neue Phänomene in der Physik sein. WissenschafterInnen der Universität Wien und Tel Aviv haben nun diese Regel explizit mit Materiewellen überprüft, indem sie massive Teilchen an einer Kombination aus Einzel-, Doppel- und Dreifachspalten interferierten. Die Analyse bestätigt den Formalismus der etablierten Quantenmechanik und wurde im Journal "Science Advances" publiziert.

Die Quantenmechanik beschreibt sehr erfolgreich das Verhalten von Partikeln auf den kleinsten Masse- und Längenskalen. Die offensichtliche Unvereinbarkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

Anbausysteme im Wandel: Europäische Ackerbaubetriebe müssen sich anpassen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Neue Einblicke in die Welt der Trypanosomen

16.08.2017 | Biowissenschaften Chemie

Maschinensteuerung an Anwender: Intelligentes System für mobile Endgeräte in der Fertigung

16.08.2017 | Informationstechnologie

Komfortable Software für die Genomanalyse

16.08.2017 | Informationstechnologie