Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wirkung neuer Gentherapien effizienter prüfen

21.03.2017

Dank eines neuen Zellmodels können im Labor neue Gentherapieansätze für die erbliche Immundefektkrankheit Septische Granulomatose rascher und kostengünstiger auf ihre Wirksamkeit getestet werden. Forschenden der Universität Zürich und des Kinderspitals Zürich gelang dies mithilfe der als «Genschere» bezeichneten CRISPR/Cas9-Technologie. Ziel ist es, in naher Zukunft schwerkranke Patienten mit neuen Ansätzen zu behandeln.

Die Septische Granulomatose ist eine angeborene Erkrankung des Immunsystems. Wegen eines Gendefekts sind die Fresszellen der betroffenen Patienten nicht in der Lage, aufgenommene Bakterien und Schimmelpilze abzutöten. Dies führt zu lebensbedrohlichen Infektionen und überschiessenden Entzündungsreaktionen mit zahlreichen schweren Folgeerscheinungen.


Bei der Septischen Granulomatose sind die Fresszellen wegen eines Genfehlers nicht mehr fähig, Bakterien und Pilze abzutöten.

Bild: ©Dlumen / iStock

Quelle: UZH

Die Erkrankung kann durch die Transplantation blutbildender Stammzellen aus dem Knochenmark von gesunden Spendern geheilt werden. Findet sich kein passender Spender, kann derzeit an wenigen Orten weltweit eine Gentherapie durchgeführt werden. Bevor diese bei Patienten eingesetzt wird, muss im Labor an menschlichen Zellen gezeigt werden, dass die Gentherapie wirkt. Dazu sind Zellmodelle unerlässlich.

Besseres Zellmodell dank «Genschere» entwickelt

Nun hat ein Forscherteam unter der Leitung von Janine Reichenbach, UZH-Professorin und Co-Leiterin der Abteilung Immunologie am Universitäts-Kinderspital Zürich, ein neues Zellmodell entwickelt, mit dem sich die Wirkung neuer Gentherapien viel effizienter überprüfen lässt. «Mithilfe der Crispr/Cas9-Technologie haben wir eine menschliche Zelllinie so verändert, dass die Blutzellen jene Genveränderung aufweisen, wie sie für eine bestimmte Form der Septischen Granulomatose typisch ist», erklärt die Kinderärztin und Immunologin.

Dadurch wiederspiegeln die veränderten Zellen die Funktionsweise der Krankheit. Bisher mussten die Wissenschaftler dazu auf Hautzellen der Patienten zurückgreifen, die sie im Labor zu Stammzellen umprogrammierten. Dieses Vorgehen ist aufwändig, zeit- und kostenintensiv. «Mit unserem neuen Testsystem geht das schneller und preiswerter, was eine rasche Entwicklung neuer Gentherapien für betroffene Patienten erlaubt», so Reichenbach.

Bereits vor rund zehn Jahren gelang es dem Team von Janine Reichenbach – damals unter der Leitung des mittlerweile emeritierten UZH-Professors Reinhard Seger – weltweit erstmals zwei Kinder mit Septischer Granulomatose klinisch erfolgreich mittels Gentherapie zu behandeln. Das Prinzip: Dem Patienten werden blutbildende Stammzellen aus dem Knochenmark entnommen, im Labor mit einer funktionsfähigen Kopie der fehlerhaften Gens ausgestattet und zurück in Blut infundiert. Die korrigierten Blutstammzellen nisten sich im Knochenmark ein und bilden gesunde Immunzellen.

Neue Genfähren machen Gentherapie sicherer

Um die gesunde Genkopie in kranke Zellen einzuschleusen, werden bisher modifizierte künstliche Viren als Transportvehikel für die korrigierenden Gene verwendet. Frühere Gentherapien mit mittlerweile überholten Genkorrektursystemen führten bei einigen Patienten in europäischen Studien neben der Heilung der Grundkrankheit zur Entwicklung von bösartigen Krebszellen. Reichenbachs Team arbeitet aktuell mit einer neuen, verbesserten Genfähre: «Wir verfügen nun über sogenannte lentivirale selbst-inaktivierende Gentherapiesysteme, die effizient sind und vor allem sicherer funktionieren». Das Kinderspital Zürich ist eines von drei europäischen Zentren, das im Rahmen einer internationalen klinischen Phase I/II-Studie diese neuen Gentherapien zur Behandlung der Septischen Granulomatose einsetzen kann (EU-FP7 Programm NET4CGD).

Zukunft der Gentherapie liegt in präziser Reparatur defekter Gene

Für das Team von Janine Reichenbach sind solche neuen Genfähren nur ein Zwischenschritt. In Zukunft sollen Gendefekte nicht mehr durch Hinzufügen eines funktionstüchtigen Gens mithilfe von viralen Genfähren therapiert werden, sondern mittels «Genom-Editing» zielgenau repariert werden. Das Stichwort heisst auch hier Crispr/Cas9. Bis diese «Präzisions-Genchirurgie» bereit ist für klinische Anwendungen, dürften allerdings noch ca. fünf bis sechs Jahre vergehen. Reichenbach zeigt sich optimistisch: «Im Bereich der Hochschulmedizin Zürich verfügen wir am hiesigen Standort über das technische, wissenschaftliche und medizinische Know-how, um zukünftig rascher neue Therapien für Patienten mit schweren erblichen Erkrankungen zu entwickeln und die UZH als internationales Kompetenzzentrum für Gen- und Zelltherapien zu etablieren.»

Literatur:
Dominik Wrona, Ulrich Siler, Janine Reichenbach. CRISPR/Cas9-generated p47phox-deficient cell line for Chronic Granulomatous Disease gene therapy vector development. Scientific Reports. March 13, 2017. DOI: 10.1038/srep44187

Kontakt:
Prof. Dr. med. Janine Reichenbach
Pädiatrische Immunologie
Universitäts-Kinderspital Zürich
Tel. + 41 44 266 73 11
E-Mail: janine.reichenbach@kispi.uzh.ch

Weitere Informationen:

http://www.media.uzh.ch/de/medienmitteilungen/2017/Gentherapien-effizienter-prue...

Kurt Bodenmüller | Universität Zürich

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics