Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Winziger magnetischer Schalter entdeckt

28.01.2011
Wissenschaftler der Uni Kiel entwickeln molekulare Maschine in Plattenspielerform

Einer Kieler Forschergruppe um den Chemiker Professor Rainer Herges ist es erstmals gelungen, den magnetischen Zustand eines einzelnen Moleküls bei Raumtemperatur gezielt zu steuern. Die Arbeit erscheint am heutigen Freitag (28.01.2011) in der Zeitschrift Science.

Das schaltbare Molekül, Ergebnis eines Teilprojekts des Sonderforschungsbereichs 677 "Funktion durch Schalten", könnte beim Bau winziger elektromagnetischer Speicher ebenso zum Einsatz kommen wie in der Medizin.

Die Wissenschaftler der Christian-Albrechts-Universität zu Kiel entwickelten eine molekulare Maschine, die ähnlich wie ein Plattenspieler aufgebaut ist. Das Molekül besteht aus einem Nickelion, das von einem Ring aus Farbstoff (Porphyrin) umgeben ist, und einem Stickstoffatom, das wie an einem Tonarm darüber schwebt. "Wenn wir dieses Molekül mit blaugrünem Licht bestrahlen, wird das Stickstoffatom wie eine Nadel exakt senkrecht auf dem Nickelion platziert", erklärt Rainer Herges. "Dadurch wird das Nickelion magnetisch, weil die Paarung zweier Elektronen aufgehoben ist", so der Chemieprofessor.

Den entgegengesetzten Effekt hat blau-violettes Licht: Das Stickstoffatom wird wieder angehoben, die Elektronen finden sich zu einem Paar zusammen und das Nickelion ist dadurch nicht mehr magnetisch. "Dieses Schalten des Magnetzustandes können wir durch abwechselndes Bestrahlen mit den beiden unterschiedlich langen Lichtwellen mehr als 10.000-mal wiederholen, ohne dass die molekulare Maschine ermüdet oder Nebenreaktionen eintreten", freut sich Herges.

Der entdeckte Schalter mit einem Durchmesser von nur 1,2 Nanometern könnte als winziger magnetischer Speicher in der molekularen Elektronik verwendet werden. Vor allem die Hersteller von Festplatten dürften daran interessiert sein, denn durch Verkleinern der Magnetpartikel auf der Oberfläche der Platten lässt sich eine höhere Speicherkapazität erreichen. Auch in der Medizin hält Professor Herges den Einsatz des magnetischen Schalters für denkbar: "Das Plattenspieler-Molekül kann intravenös als Kontrastmittel in der Kernspintomografie (MRT) verwendet werden, um nach Tumoren oder Engstellen in Blutgefäßen zu suchen. Erste Tests in der Neuroradiologie des Universitätsklinikums Schleswig-Holstein waren erfolgreich." Da durch das Schalten das Signal-Rausch-Verhältnis verbessert wird, kommt man mit weniger Kontrastmittel aus als bei den bisher verwendeten magnetischen Salzen. Zudem, so Herges, könnte die molekulare Maschine als Basis für die Entwicklung neuartiger Kontrastmittel dienen, etwa um die Temperatur, den pH-Wert oder sogar bestimmte biochemische Marker im Körper dreidimensional darzustellen. Rainer Herges zählt mögliche Anwendungsgebiete auf: "Mit solchen Kontrastmitteln könnte man Entzündungsherde lokalisieren, Tumore aufspüren und viele Stoffwechselvorgänge visualisieren."

Die Christian-Albrechts-Universität zu Kiel hat als Forschungsuniversität im Norden Deutschlands eine ausgewiesene internationale Expertise in den Nanowissenschaften, zum Beispiel im Sonderforschungsbereich 677 "Funktion durch Schalten" der Deutschen Forschungsgemeinschaft. In der aktuellen Runde der Exzellenzinitiative bewirbt sich die CAU zudem mit einem Nano-Exzellenzcluster.

Originalveröffentlichung:
Magnetic Bistability of Molecules in homogenous solution at Room Temperature. Science 28.01.2011, DOI: 10.1126/science.1201180

Drei Bilder zum Thema stehen zum Download bereit:

http://www.uni-kiel.de/download/pm/2011/2011-007-1.jpg
Bildunterschrift: Ein vergrößertes Modell des von Kieler Forschern entwickelten molekularen Schalters auf einem alten Grammofon. Unter blaugrünem beziehungsweise blauviolettem Licht funktioniert diese winzige Maschine im Prinzip wie ein Plattenspieler.

Copyright: CAU, Foto: Rainer Herges/Torsten Winkler

http://www.uni-kiel.de/download/pm/2011/2011-007-2.jpg
Bildunterschrift: Professor Rainer Herges (links) und Marcel Dommaschk bestrahlen eine Lösung des molekularen Magnetschalters mit blaugrünem und blauviolettem Licht. Durch die Lichtwellen können die Forscher den magnetischen Zustand des Moleküls ändern.

Copyright: CAU, Foto: Torsten Winkler

http://www.uni-kiel.de/download/pm/2011/2011-007-3.jpg
Bildunterschrift: Das Plattenspieler-Molekül im Modell. Die Pfeile symbolisieren den magnetischen Zustand im Nickelion, der sich durch Kontakt mit dem Stickstoffatom am "Tonarm" gezielt schalten lässt.

Copyright: CAU, Grafik: Rainer Herges

Kontakt:
Prof. Dr. Rainer Herges
Otto Diels-Institut für Organische Chemie
Christian-Albrechts-Universität zu Kiel
Tel.: 0431/880-2440
E-Mail: rherges@oc.uni-kiel.de

Sandra Sieraad | idw
Weitere Informationen:
http://www.uni-kiel.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Pflanzen ihr Gedächtnis vererben
21.08.2017 | Gregor Mendel Institut für Molekulare Pflanzenbiologie (GMI)

nachricht Eine Karte der Zellkraftwerke
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Studie für Patienten mit Prostatakrebs: Einteilung in genomische Gruppen soll Therapie präzisieren

21.08.2017 | Interdisziplinäre Forschung

Forscher entwickeln zweidimensionalen Kristall mit hoher Leitfähigkeit

21.08.2017 | Physik Astronomie

Ein neuer Indikator für marine Ökosystem-Veränderungen - der Dia/Dino-Index

21.08.2017 | Ökologie Umwelt- Naturschutz