Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Winziger Goethe-Kopf in 3D

27.05.2014

Biologische Prozesse auf molekularer Ebene zeitlich und räumlich präzise steuern zu können, spielt eine Schlüsselrolle in den Lebens- und Materialwissenschaften. Biochemikern der Goethe-Universität ist es gelungen, eine winzige dreidimensionale Struktur aus Biomolekülen zu bauen, die sie mit Licht aktivieren. Auf dem Titelbild der Fachzeitschrift „Angewandte Chemie“ demonstrieren sie dies anhand des Goethe-Kopfes im Logo der Universität.

Dreht man die Aufnahme des grün leuchtenden Goethe-Kopfes am Computerbildschirm, zeigt sich, dass Haare, Gesicht sowie Hals und Schulterpartie in unterschiedlichen Ebenen liegen. Die Struktur besteht aus dem Molekül Glutathion und wurde mittels dreidimensionaler Mikroskopie in ein Gel gezeichnet. Glutathion hat zusammen mit dem Protein Glutathion-S-Transferase (GST) im menschlichen Körper eine entgiftende Wirkung. Molekül und Protein binden nach dem Schlüssel-Schloss-Prinzip aneinander.

Schon vor zwei Jahren hatte Volker Gatterdam in der Forschergruppe um Prof. Robert Tampé vom Institut für Biochemie eine Molekül-Protein-Verbindung verwendet, um mit einem Laser mikroskopisch kleine Bilder zu zeichnen. Das Glutathion wurde dazu mit einer licht-aktivierbaren Schutzgruppe versehen, so dass es nicht an GST binden kann.

Sobald die Schutzgruppe durch Licht abgespalten wird, reagiert es mit einem grün fluoreszierenden Rezeptor. In Zusammenarbeit mit den Forschungsgruppen um Prof. Alexander Heckel (Organische Chemie und Chemische Biologie) und Prof. Josef Wachtveitl (Physikalische und Theoretische Chemie) entwickelte Volker Gatterdam nun eine neue Variante des licht-aktivierbaren Glutathions, das mit einem Zwei-Photonen-Laser aktiviert wird.

Das Besondere am Zwei-Photonen-Laser ist seine hohe räumliche Auflösung, also die Genauigkeit, mit der ein ganz bestimmter Punkt angesteuert werden kann. Ander als bei der herkömmlichen Mikroskopie, bei der nur ein Photon des Lasers ein Molekül anregt, regen hier zwei Photonen gleichzeitig die Schutzgruppe des Glutathions an und spalten sie sehr präzise ab. Weniger Millisekunden später kann dann ein grün fluoreszierender Rezeptor binden und das Muster sichtbar machen.

Die hohe Photonendichte des Zwei-Photonen-Lasers kann nur in einem winzig kleinen Volumen von etwa dem Volumen einer einzelnen Bakterienzelle) erreicht werden. „Das ist ein großer Vorteil“, erläutert Volker Gatterdam, „Man kann auf diese Weise kleinste Punkte genau ansteuern, und das in drei Dimensionen“. So konnte er die verschiedensten 3D-Bilder „schreiben“, vom Goethe-Kopf über Marylin Monroe, bis hin zu einem QR-Code. Das Aufleuchten lässt sich in Echtzeit beobachten.

Diese Experimente legen den Grundstein für viele weitere. Da der Zwei-Photonen-Laser für Zellen deutlich weniger schädlich ist und tiefer eindringen kann, bietet sich dieses System auch für Experimente mit menschlichem Gewebe und Organen an. Es ist zum Beispiel denkbar, zelluläre Prozesse präzise, an einer bestimmten Stelle mit hoher zeitlicher Auflösung auszulösen.

Publikation:
Volker Gatterdam et al.: Dreidimensionale Proteinnetzwerke durch Zwei-Photonen-Aktivierung, in: Angewandte Chemie, Bd. 126 /2014), S. 1-6, DOI: 10.1002/ange.201309930

Ein Video zum Download finden Sie hier: www.muk.uni-frankfurt.de/50797186

Informationen: Prof. Robert Tampé, Campus Riedberg, Tel.: (069) 798-29475, tampe@em.uni-frankfurt.de

Die Goethe-Universität ist eine forschungsstarke Hochschule in der europäischen Finanzmetropole Frankfurt. 2014 feiert sie ihren 100. Geburtstag. 1914 gegründet mit rein privaten Mitteln von freiheitlich orientierten Frankfurter Bürgerinnen und Bürgern fühlt sie sich als Bürgeruniversität bis heute dem Motto „Wissenschaft für die Gesellschaft“ in Forschung und Lehre verpflichtet. Viele der Frauen und Männer der ersten Stunde waren jüdische Stifter. In den letzten 100 Jahren hat die Goethe-Universität Pionierleistungen erbracht auf den Feldern der Sozial-, Gesellschafts- und Wirtschaftswissenschaften, Chemie, Quantenphysik, Hirnforschung und Arbeitsrecht. Am 1. Januar 2008 gewann sie mit der Rückkehr zu ihren historischen Wurzeln als Stiftungsuniversität ein einzigartiges Maß an Eigenständigkeit. Heute ist sie eine der zehn drittmittelstärksten und drei größten Universitäten Deutschlands mit drei Exzellenzclustern in Medizin, Lebenswissenschaften sowie Geisteswissenschaften.“

Mehr Informationen unter www2.uni-frankfurt.de/gu100

Herausgeber: Der Präsident
Abteilung Marketing und Kommunikation, Postfach 11 19 32,
60054 Frankfurt am Main
Redaktion: Dr. Anne Hardy, Referentin für Wissenschaftskommunikation Telefon (069) 798 – 2 92 28, Telefax (069) 798 – 763 12531, E-Mail hardy@pvw.uni-frankfurt.de
Internet: www.uni-frankfurt.de

Dr. Anne Hardy | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Geckos kommunizieren überraschend flexibel
29.05.2017 | Max-Planck-Institut für Ornithologie

nachricht Bauchspeicheldrüsenkrebs: Forschungsgruppe erprobt erfolgreich neue Diagnose- und Therapieansätze
29.05.2017 | Wilhelm Sander-Stiftung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue Methode für die Datenübertragung mit Licht

Der steigende Bedarf an schneller, leistungsfähiger Datenübertragung erfordert die Entwicklung neuer Verfahren zur verlustarmen und störungsfreien Übermittlung von optischen Informationssignalen. Wissenschaftler der Universität Johannesburg, des Instituts für Angewandte Optik der Friedrich-Schiller-Universität Jena und des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) präsentieren im Fachblatt „Journal of Optics“ eine neue Möglichkeit, glasfaserbasierte und kabellose optische Datenübertragung effizient miteinander zu verbinden.

Dank des Internets können wir in Sekundenbruchteilen mit Menschen rund um den Globus in Kontakt treten. Damit die Kommunikation reibungslos funktioniert,...

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebensdauer alternder Brücken - prüfen und vorausschauen

29.05.2017 | Veranstaltungen

49. eucen-Konferenz zum Thema Lebenslanges Lernen an Universitäten

29.05.2017 | Veranstaltungen

Internationale Konferenz an der Schnittstelle von Literatur, Kultur und Wirtschaft

29.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Intelligente Sensoren mit System

29.05.2017 | Messenachrichten

Geckos kommunizieren überraschend flexibel

29.05.2017 | Biowissenschaften Chemie

1,5 Millionen Euro für vier neue „Innovative Training Networks” an der Universität Hamburg

29.05.2017 | Förderungen Preise