Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Winziger Goethe-Kopf in 3D

27.05.2014

Biologische Prozesse auf molekularer Ebene zeitlich und räumlich präzise steuern zu können, spielt eine Schlüsselrolle in den Lebens- und Materialwissenschaften. Biochemikern der Goethe-Universität ist es gelungen, eine winzige dreidimensionale Struktur aus Biomolekülen zu bauen, die sie mit Licht aktivieren. Auf dem Titelbild der Fachzeitschrift „Angewandte Chemie“ demonstrieren sie dies anhand des Goethe-Kopfes im Logo der Universität.

Dreht man die Aufnahme des grün leuchtenden Goethe-Kopfes am Computerbildschirm, zeigt sich, dass Haare, Gesicht sowie Hals und Schulterpartie in unterschiedlichen Ebenen liegen. Die Struktur besteht aus dem Molekül Glutathion und wurde mittels dreidimensionaler Mikroskopie in ein Gel gezeichnet. Glutathion hat zusammen mit dem Protein Glutathion-S-Transferase (GST) im menschlichen Körper eine entgiftende Wirkung. Molekül und Protein binden nach dem Schlüssel-Schloss-Prinzip aneinander.

Schon vor zwei Jahren hatte Volker Gatterdam in der Forschergruppe um Prof. Robert Tampé vom Institut für Biochemie eine Molekül-Protein-Verbindung verwendet, um mit einem Laser mikroskopisch kleine Bilder zu zeichnen. Das Glutathion wurde dazu mit einer licht-aktivierbaren Schutzgruppe versehen, so dass es nicht an GST binden kann.

Sobald die Schutzgruppe durch Licht abgespalten wird, reagiert es mit einem grün fluoreszierenden Rezeptor. In Zusammenarbeit mit den Forschungsgruppen um Prof. Alexander Heckel (Organische Chemie und Chemische Biologie) und Prof. Josef Wachtveitl (Physikalische und Theoretische Chemie) entwickelte Volker Gatterdam nun eine neue Variante des licht-aktivierbaren Glutathions, das mit einem Zwei-Photonen-Laser aktiviert wird.

Das Besondere am Zwei-Photonen-Laser ist seine hohe räumliche Auflösung, also die Genauigkeit, mit der ein ganz bestimmter Punkt angesteuert werden kann. Ander als bei der herkömmlichen Mikroskopie, bei der nur ein Photon des Lasers ein Molekül anregt, regen hier zwei Photonen gleichzeitig die Schutzgruppe des Glutathions an und spalten sie sehr präzise ab. Weniger Millisekunden später kann dann ein grün fluoreszierender Rezeptor binden und das Muster sichtbar machen.

Die hohe Photonendichte des Zwei-Photonen-Lasers kann nur in einem winzig kleinen Volumen von etwa dem Volumen einer einzelnen Bakterienzelle) erreicht werden. „Das ist ein großer Vorteil“, erläutert Volker Gatterdam, „Man kann auf diese Weise kleinste Punkte genau ansteuern, und das in drei Dimensionen“. So konnte er die verschiedensten 3D-Bilder „schreiben“, vom Goethe-Kopf über Marylin Monroe, bis hin zu einem QR-Code. Das Aufleuchten lässt sich in Echtzeit beobachten.

Diese Experimente legen den Grundstein für viele weitere. Da der Zwei-Photonen-Laser für Zellen deutlich weniger schädlich ist und tiefer eindringen kann, bietet sich dieses System auch für Experimente mit menschlichem Gewebe und Organen an. Es ist zum Beispiel denkbar, zelluläre Prozesse präzise, an einer bestimmten Stelle mit hoher zeitlicher Auflösung auszulösen.

Publikation:
Volker Gatterdam et al.: Dreidimensionale Proteinnetzwerke durch Zwei-Photonen-Aktivierung, in: Angewandte Chemie, Bd. 126 /2014), S. 1-6, DOI: 10.1002/ange.201309930

Ein Video zum Download finden Sie hier: www.muk.uni-frankfurt.de/50797186

Informationen: Prof. Robert Tampé, Campus Riedberg, Tel.: (069) 798-29475, tampe@em.uni-frankfurt.de

Die Goethe-Universität ist eine forschungsstarke Hochschule in der europäischen Finanzmetropole Frankfurt. 2014 feiert sie ihren 100. Geburtstag. 1914 gegründet mit rein privaten Mitteln von freiheitlich orientierten Frankfurter Bürgerinnen und Bürgern fühlt sie sich als Bürgeruniversität bis heute dem Motto „Wissenschaft für die Gesellschaft“ in Forschung und Lehre verpflichtet. Viele der Frauen und Männer der ersten Stunde waren jüdische Stifter. In den letzten 100 Jahren hat die Goethe-Universität Pionierleistungen erbracht auf den Feldern der Sozial-, Gesellschafts- und Wirtschaftswissenschaften, Chemie, Quantenphysik, Hirnforschung und Arbeitsrecht. Am 1. Januar 2008 gewann sie mit der Rückkehr zu ihren historischen Wurzeln als Stiftungsuniversität ein einzigartiges Maß an Eigenständigkeit. Heute ist sie eine der zehn drittmittelstärksten und drei größten Universitäten Deutschlands mit drei Exzellenzclustern in Medizin, Lebenswissenschaften sowie Geisteswissenschaften.“

Mehr Informationen unter www2.uni-frankfurt.de/gu100

Herausgeber: Der Präsident
Abteilung Marketing und Kommunikation, Postfach 11 19 32,
60054 Frankfurt am Main
Redaktion: Dr. Anne Hardy, Referentin für Wissenschaftskommunikation Telefon (069) 798 – 2 92 28, Telefax (069) 798 – 763 12531, E-Mail hardy@pvw.uni-frankfurt.de
Internet: www.uni-frankfurt.de

Dr. Anne Hardy | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics