Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Winzige RNAs bringen Gene zum Schweigen

08.01.2010
Freiburger Forscher entdecken neuen Mechanismus der Genregulation - Veröffentlichung in CELL

RNA-Moleküle sind die mobilen Boten der Gene. Sie tragen die Information zur Herstellung von Eiweißen von der DNA zu den Ribosomen. Neben diesen Boten-RNAs haben alle Lebewesen winzige RNA-Moleküle, sogenannte microRNAs, die die Boten-RNAs und damit die Proteinproduktion behindern können.

Biologen der Albert-Ludwigs-Universität Freiburg um Privatdozent Wolfgang Frank und Professor Dr. Ralf Reski vom Lehrstuhl für Pflanzenbiotechnologie entdeckten nun, dass solche microRNAs auch direkt mit Genen in Kontakt treten und diese dadurch abschalten können. Ihre Erkenntnisse wurden in der aktuellen Ausgabe der renommierten Fachzeitschrift CELL veröffentlicht.

Mit Ausnahme einiger Viren wird in allen Lebewesen die Erbinformation, die Summe all ihrer Gene, in Form von DNA gespeichert. Aktive Gene werden in Boten-RNAs, die sogenannten mRNAs, umgeschrieben, die als Blaupausen für die Produktion von Proteinen an den Ribosomen dienen. Inaktive Gene werden nicht in mRNAs umgeschrieben. Die feine Balance zwischen an- und abgeschalteten Genen ist in verschiedenen Organen unterschiedlich und verändert sich im Laufe der Entwicklung und unter Umwelteinflüssen. Wird diese Balance gestört, kommt es zu Missbildungen und Krankheiten wie zum Beispiel Krebs. 2006 bekamen die amerikanischen Biologen Mello & Fire einen Nobelpreis für ihre Entdeckung, dass im Fadenwurm C. elegans winzig kleine RNA-Moleküle sich an mRNAs anlagern können und so verhindern, dass diese in Proteine übersetzt werden.

Nun beschreiben die Freiburger Biologen zusammen mit Forschern des Max-Planck-Instituts für Entwicklungsbiologie in Tübingen in der aktuellen Ausgabe von CELL, dass microRNAs nicht nur indirekt über die Behinderung von mRNAs, sondern auch direkt Gene abschalten können. Dabei werden diese Gene chemisch durch das Hinzufügen von Methylgruppen stillgelegt. Solche Veränderungen werden in der Fachsprache der Biologen als Epigenetik bezeichnet.

Diesen neuen Mechanismus der Genregulation haben die Forscher bei dem Kleinen Blasenmützenmoos Physcomitrella patens, dem bevorzugten Forschungsobjekt am Freiburger Lehrstuhl für Pflanzenbiotechnologie, gefunden. Der Originaltitel der Veröffentlichung lautet: "Transcriptional control of gene expression by microRNAs" (CELL 140, 8. Januar 2010, S. 111). Die Editoren von CELL heben die Bedeutung dieser Entdeckung dadurch hervor, dass sie eine Zeichnung (siehe beiliegendes Bild), die das zentrale Ergebnis der Arbeit veranschaulicht, als Titelbild ausgewählt haben.

Neben PD Dr. Wolfgang Frank und Prof. Dr. Ralf Reski sind Dr. Basel Khraiwesh, M. Asif Arif, Dr. Gotelinde I. Seumel aus Freiburg sowie Stephan Ossowski und Prof. Dr. Detlef Weigel vom MPI Tübingen an dieser Studie beteiligt. Die Idee für das Titelbild hatten Christoph Bächtle und Dr. Ralf Kindervater von der BioPro Baden-Württemberg, künstlerisch umgesetzt haben die Idee Hannes Rall und Michael Meier.

Als die Freiburger Biologen so genannte Knockout-Moose erstellten, waren sie von dem Effekt überrascht, weil er allen bisherigen Erwartungen widersprach. Nun vermuten sie, dass der von ihnen aufgedeckte Mechanismus zur Genregulation nicht nur beim Moos vorkommt, sondern in vielen anderen Lebewesen, einschließlich uns Menschen.

Gefördert wurden die Arbeiten der Freiburger Biologen von der Landesstiftung Baden-Württemberg, dem Bundesministerium für Bildung und Forschung (BMBF) über die Freiburger Initiative für Systembiologie (FRISYS) sowie der Exzellenzinitiative von Bund und Ländern über das Zentrum für Biologische Signalstudien (bioss). Einer der Erstautoren der Veröffentlichung, M. Asif Arif, war Stipendiat des Deutschen Akademischen Auslandsdienstes (DAAD). Das Titelbild zur wissenschaftlichen Studie wurde gefördert durch die BioPro Baden-Württemberg GmbH.

Kontakt:
PD Dr. Wolfgang Frank
Prof. Dr. Ralf Reski
Fakultät für Biologie
Lehrstuhl Pflanzenbiotechnologie
Universität Freiburg
Tel.: 0761/203-6968
Fax: 0761/203-6967
E-Mail: pbt@biologie.uni-freiburg.de

Rudolf-Werner Dreier | idw
Weitere Informationen:
http://www.plant-biotech.net
http://www.uni-freiburg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Adenoviren binden gezielt an Strukturen auf Tumorzellen
23.04.2018 | Eberhard Karls Universität Tübingen

nachricht Software mit Grips
20.04.2018 | Max-Planck-Institut für Hirnforschung, Frankfurt am Main

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Moleküle brillant beleuchtet

Physiker des Labors für Attosekundenphysik, der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik haben eine leistungsstarke Lichtquelle entwickelt, die ultrakurze Pulse über einen Großteil des mittleren Infrarot-Wellenlängenbereichs generiert. Die Wissenschaftler versprechen sich von dieser Technologie eine Vielzahl von Anwendungen, unter anderem im Bereich der Krebsfrüherkennung.

Moleküle sind die Grundelemente des Lebens. Auch wir Menschen bestehen aus ihnen. Sie steuern unseren Biorhythmus, zeigen aber auch an, wenn dieser erkrankt...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Metalle verbinden ohne Schweißen

Kieler Prototyp für neue Verbindungstechnik wird auf Hannover Messe präsentiert

Schweißen ist noch immer die Standardtechnik, um Metalle miteinander zu verbinden. Doch das aufwändige Verfahren unter hohen Temperaturen ist nicht überall...

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Fraunhofer eröffnet Community zur Entwicklung von Anwendungen und Technologien für die Industrie 4.0

23.04.2018 | Veranstaltungen

Mars Sample Return – Wann kommen die ersten Gesteinsproben vom Roten Planeten?

23.04.2018 | Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Moleküle brillant beleuchtet

23.04.2018 | Physik Astronomie

Sauber und effizient - Fraunhofer ISE präsentiert Wasserstofftechnologien auf Hannover Messe

23.04.2018 | HANNOVER MESSE

Fraunhofer IMWS entwickelt biobasierte Faser-Kunststoff-Verbunde für Leichtbau-Anwendungen

23.04.2018 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics