Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wildgras-Genom liefert Informationen für Weizen-Genom

10.04.2013
Kenntnis der Genomsequenz verbessert Zucht
Das riesige und komplex aufgebaute Weizengenom ist nicht einfach zu sequenzieren. Nun gelang Wissenschaftlern die Sequenzanalyse des Wildgrases Aegilops tauschii, das einst mit dem Emmer zu unserem heutigen Weizen verschmolz.

Wegen seines komplexen Erbguts ist die Züchtungsforschung bei Weizen noch lange nicht soweit wie bei anderen Nutzpflanzen. Züchtern geht es vor allem darum, den Ernteertrag zu verbessern und die genetischen Hintergründe von Eigenschaften wie Kälte-, Trockenheit- und Krankheitsresistenz zu verstehen. Dazu wäre es natürlich sehr hilfreich, wenn das Genom des Weizens gänzlich bekannt wäre. So weit sind die Wissenschaftler allerdings noch nicht. Durch evolutionäre Verwandtschaft mit Pflanzen die weniger komplexe Genome besitzen, versuchen die Forscher sich dem Ziel, das gesamte Genom der Weltnahrungspflanze Weizen zu entschlüsseln, zu nähern. Deutsche Forscher sind hieran maßgeblich beteiligt. Sei es als Bioinformatiker bei der Datenanalyse und Assemblierung der Genome oder bei der Sequenzierung der Gerste. Gerste ist bedeutende Kulturpflanze und gleichzeitig ein Modellorganismus für den Weizen.

Weizengenom schwierig zu sequenzieren

Der moderne Weizen entstand durch die Aufnahme des gesamten Gensatzes des Wildgrases Aegilops tauschii in den Emmer. Das hexaploide Weizengenom ist mit seinen 16 Milliarden DNA-Bausteinen (16 Mbp) etwa fünfmal so groß wie das menschliche Genom. Zwei Faktoren erschweren das Sequenzieren des großen Getreidegenoms zusätzlich: Zum einen die große Anzahl sich wiederholender , repetitiver Basenabfolgen, zum anderen die große Anzahl der als springende Gene bezeichneten DNA-Abschnitte, die Transposons. Zum Vergleich: Das Arabidopsisgenom enthält etwa 10 Prozent repetitive Sequenzen, beim Weizen sind es um die 80 Prozent. Auch Transposons beinhalten viele repetitive Basenabfolgen. Diese erschweren das Zusammensetzen der vielen kleinen Bruchstücke, den sogenannten „Reads“, die von den Sequenziergeräten erzeugt werden. Diese müssen zu der Gesamtsequenz des Genoms, der Konsensussequenz, zusammengefügt werden. Vor allem beim Einsatz der neuen Next-Generation-Sequencing-Technologien (NGS), die nur relativ kurze Leselängen erlauben, entstehen zum Teil beträchtliche Lücken in der Basenabfolge des Genoms, weil die zahlreichen sich wiederholenden Abschnitte mit bioinformatischen Methoden nicht richtig aneinander gefügt werden können.
Vom Wildgras-Genom zum Weizen-Genom

Nun ist es ihnen jedoch gelungen, 83,4 % der gesamten Genomsequenz des diploiden Wildgrases Aegilops tauschii, das einst mit dem Emmer zum Weizen verschmolz, zu bestimmen. Ihre Daten zeigten, dass rund zwei Drittel des Wildgrasgenoms aus 410 verschiedenen Familien von Transposons besteht. Der Ursprung und die biologische Funktion von Transposons ist noch nicht vollständig geklärt. Es handelt sich vermutlich um von Retroviren abgeleitete DNA, die sich in das Wirtsgenom integrierte und dann vererbt wird. Forschungsergebnisse zeigten jedoch, dass Transposons eine durchaus wichtige Funktion haben, da sie wichtige genetische Innovationen rasch im Erbgut verbreiten können.

Die Ausdehnung des Wildgrasgenoms durch die Insertionen der Transposons muss den Wissenschaftlern zufolge evolutionsgeschichtlich in jüngerer Zeit und zeitgleich mit dem abrupten Klimawandel während des Pliozäns vor etwa vier Millionen Jahren stattgefunden haben.

Genetische Informationen für besondere Merkmale

Seine verbesserte Widerstandsfähigkeit gegenüber Krankheiten scheint das Wildgras der mikroRNA-Familie miR2275 zu verdanken, von der die Wissenschaftler acht Mitglieder in Aegilops tauschii fanden. Diese mikroRNAs waren bereits zuvor mit der pflanzlichen Immunabwehr assoziiert worden. Bei Reis sind bisher zwei dieser mikroRNAs bekannt, bei Mais immerhin vier.

Außerdem erregte eine weitere Entdeckung das Aufsehen der Wissenschaftler: Aegilops tauschii verfügt über wesentlich mehr Gene (485) der Cytochrom P450 Familie als Hirse (365), Reis (333), Brachypodium (262) und Mais (261). Diese Genfamilie spielt vor allem bei der Reaktion einer Pflanze auf abiotischen Stress, also die sich verändernden Umweltbedingungen, eine Rolle.

Bedeutung des Weizens

Weizen ist eines der wichtigsten Grundnahrungsmittel weltweit. Zum Weizen gehören eine Reihe von Pflanzenarten der Süßgräser (Poaceae) der Gattung Triticum L.. Der heutige Saatweizen ging aus der Kreuzung mehrerer Getreide- und Wildgrasarten hervor. Die ersten angebauten Weizenarten waren Einkorn (Triticum monococcum) und Emmer (Triticum dicoccum) und wurden im Vorderen Orient kultiviert.

Aus dem Einkorn entwickelte sich durch die natürliche Kreuzung mit einem anderen Wildgras der tetraploide Emmer (Triticum dicoccum), aus dem später durch Zucht Arten wie Hartweizen und Kamut entstanden. Der heute vorwiegend angebaute Weichweizen (Triticum aestivum) ist eine jüngere Züchtung und genetisch relativ weit von dem in historischen Quellen genannten „Weizen“ entfernt.

So verzehrten die alten Römer das Wildgras Aegilops tauschii als Weizen, das wir heute als Emmer bezeichnen.

Daten frei zugänglich

Die Wissenschaftler sehen in ihrer Arbeit einen wichtigen Beitrag zum Verständnis der genetischen Vielfältigkeit des Weizens und seiner Entstehungsgeschichte. Dieses Wissen bilde die Grundlage, den Weizen an den globalen Klimawandel und den wachsenden Bedarf der Menschen an Nahrung und Bioenergie anzupassen.

Die riesige Datenmenge von 1,5 Terrabyte steht allen Wissenschaftlern in der GigaScience Datenbank unter http://dx.doi.org/10.5524/100050 and http://dx.doi.org/10.5524/100054 und als Rohdaten in der NCBI SRA Datenbank unter den Zugangsnummern SRP005973 and SRP005974 zu freien Verfügung.

Quelle:

Jia, J. et al. (2013): Aegilops tauschiidraft genome sequence reveals a gene repertoire for wheat adaptation. Nature 496, 91–95 (04 April 2013)

doi:10.1038/nature12028

Jia, J. et al. | Pflanzenforschung.de
Weitere Informationen:
http://www.pflanzenforschung.de/index.php?cID=8836

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Kieselalge in der Antarktis liest je nach Umweltbedingungen verschiedene Varianten seiner Gene ab
17.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

nachricht Proteinforschung: Der Computer als Mikroskop
16.01.2017 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: Mit Bindfaden und Schere - die Chromosomenverteilung in der Meiose

Was einmal fest verbunden war sollte nicht getrennt werden? Nicht so in der Meiose, der Zellteilung in der Gameten, Spermien und Eizellen entstehen. Am Anfang der Meiose hält der ringförmige Proteinkomplex Kohäsin die Chromosomenstränge, auf denen die Bauanleitung des Körpers gespeichert ist, zusammen wie ein Bindfaden. Damit am Ende jede Eizelle und jedes Spermium nur einen Chromosomensatz erhält, müssen die Bindfäden aufgeschnitten werden. Forscher vom Max-Planck-Institut für Biochemie zeigen in der Bäckerhefe wie ein auch im Menschen vorkommendes Kinase-Enzym das Aufschneiden der Kohäsinringe kontrolliert und mit dem Austritt aus der Meiose und der Gametenbildung koordiniert.

Warum sehen Kinder eigentlich ihren Eltern ähnlich? Die meisten Zellen unseres Körpers sind diploid, d.h. sie besitzen zwei Kopien von jedem Chromosom – eine...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

14. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

12.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Erforschung von Elementarteilchen in Materialien

17.01.2017 | Physik Astronomie

Wasser - der heimliche Treiber des Kohlenstoffkreislaufs?

17.01.2017 | Geowissenschaften

Kieselalge in der Antarktis liest je nach Umweltbedingungen verschiedene Varianten seiner Gene ab

17.01.2017 | Biowissenschaften Chemie