Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wiener ForscherInnen entdecken neue Stressreaktion in Bakterien

27.09.2011
Bakterien reagieren auf Veränderungen ihrer Lebensbedingungen. Insbesondere jene, die andere Lebewesen infizieren, sind der Reaktion des Immunsystems ihres Wirts – Temperaturschwankungen, unterschiedliche pH-Werte oder Antibiotika – ausgesetzt.

Das verursacht Stress. Um diese Bedingungen zu überleben, haben Bakterien Anpassungsstrategien entwickelt. Isabella Moll und ihr Team von den Max F. Perutz Laboratories der Universität Wien haben nun einen neuen Mechanismus zum Überleben entdeckt. Dieser beruht nicht auf dem Ein- bzw. Ausschalten von Genen, sondern auf der gezielten Veränderung der Ribosomen, der "Proteinfabriken" in der Zelle. Die Ergebnisse erscheinen im Fachmagazin "Cell".

Die meisten Stressreaktionen basieren auf Veränderung der Transkription, also darauf, dass bestimmte Gene ein- bzw. ausgeschaltet werden. Bei der Transkription werden die aktiven Gene abgelesen, und es entsteht eine Vorlage für die Herstellung von Proteinen – die sogenannte mRNA (messenger RNA). Nach dieser Vorlage werden dann von den Ribosomen Proteine zusammengesetzt – die sogenannte Translation, die der Transkription nachgelagert ist. "Die Strategie, die wir entdeckt haben, setzt bei der Translation an und erlaubt den Bakterien eine Art 'Feinjustierung' ihrer Stressantwort", erklärt Isabella Moll, Gruppenleiterin an den Max F. Perutz Laboratories der Universität Wien und Hauptautorin der Studie.

Zelltod als Überlebensstrategie

Die ForscherInnen haben dazu einen bereits bekannten Mechanismus – das sogenannte Toxin/Antitoxin-System MazEF – am Bakterium "Escherichia coli" genauer unter die Lupe genommen. Es besteht aus zwei hintereinander liegenden Gensequenzen, die jeweils für ein Gift und ein Gegengift – in diesem Fall MazF und MazE – codieren. Unter normalen Bedingungen halten die beiden ein Gleichgewicht. Steht die Zelle unter Stress, gerät das chemisch instabilere Gegengift MazE ins Hintertreffen, und MazF entfaltet seine toxische Wirkung. Es baut den Großteil der mRNA-Moleküle – also der Produktionsvorlagen – ab, wodurch die Proteinproduktion der Zelle unterdrückt wird.

Das wirkt auf den ersten Blick absurd, löst aber einen durchaus sinnvollen, höchst interessanten Prozess aus: Unter ungünstigen Umweltbedingungen, etwa durch Antibiotika oder Nahrungsmangel, begeht ein Teil der Bakterien auf diese Weise sozusagen "altruistischen Selbstmord". MolekularbiologInnen sprechen vom programmierten Zelltod, durch den einzelne Zellen sich selbst töten. Dadurch stehen den anderen, überlebenden Zellen wieder vermehrt Nährstoffe zur Verfügung, was insgesamt zum Überleben der Population beiträgt.

Überraschende Doppelfunktion

"Wir haben aber beobachtet, dass nicht die gesamte Proteinproduktion betroffen war. Ein kleiner Teil der Proteine wurde trotzdem erzeugt", erzählt Isabella Moll. "Da wollten wir natürlich wissen, warum das so ist, und wie das auf molekularer Ebene funktioniert". Die WissenschafterInnen untersuchten, wie MazF die mRNAs zerstört und konnten zeigen, dass bei bestimmten mRNAs die spezifische "Erkennungssequenz" am Anfang abgeschnitten wird. Die dadurch entstehenden "leaderless" mRNAs werden von den Ribosomen nicht mehr als Proteinvorlage erkannt. Gleichzeitig entdeckten die ForscherInnen aber auch, dass MazF auch einen Teil der Ribosomen verändert: Das Toxin schneidet einen funktionell wichtigen Teil der ribosomalen RNA ab, wodurch die Spezifität der Ribosomen verändert wird. Diese speziellen "Stress-Ribosomen" erlauben dann nur noch die gezielte Translation der "leaderless" mRNAs und produzieren daher nur noch jene Proteine, die zur Stressantwort gebraucht werden. "MazF hat also keine ausschließlich destruktive Funktion, wie bisher angenommen, sondern spielt vielmehr eine regulierende Rolle bei der Stressreaktion", so Molekularbiologin Isabella Moll.

Die Ergebnisse der in der Fachzeitschrift "Cell" veröffentlichten Arbeit könnten dazu beitragen, dass potentielle Angriffspunkte identifiziert und in weiterer Folge neue Medikamente gegen krankheitserregende Bakterien entwickelt werden.

Publikation
Oliver Vesper, Shahar Amitai, Maria Belitsky, Konstantin Byrgazov, Anna Chao Kaberdina, Hanna Engelberg-Kulka and Isabella Moll. Selective Translation of Leaderless mRNAs by Specialized Ribosomes Generated by MazF in Escherichia coli. In: Cell (2011), doi:10.1016/j.cell.2011.07.047

Die Max F. Perutz Laboratories (MFPL) sind ein gemeinsames Forschungs- und Ausbildungszentrum der Universität Wien und der Medizinischen Universität Wien am Campus Vienna Biocenter. An den MFPL sind rund 450 WissenschafterInnen in über 60 Forschungsgruppen mit Grundlagenforschung im Bereich der Molekularbiologie beschäftigt.

Wissenschaftlicher Kontakt
Dr. Isabella Moll
Max F. Perutz Laboratories
Universität Wien
1030 Wien, Dr.-Bohr-Gasse 9
T +43-1-4277-546 06
isabella.moll@univie.ac.at
Rückfragehinweis
Gabriele Schaller
Max F. Perutz Laboratories
Communications
1030 Wien, Dr.-Bohr-Gasse 9
T +43 1 4277-240 14
communications@mfpl.ac.at

Veronika Schallhart | idw
Weitere Informationen:
http://www.univie.ac.at
http://www.mfpl.ac.at/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Immunabwehr ohne Kollateralschaden
23.01.2017 | Universität Basel

nachricht Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens
23.01.2017 | Verband Biologie, Biowissenschaften und Biomedizin in Deutschland e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wie der Nordatlantik zum Wärmepirat wurde

23.01.2017 | Geowissenschaften

Immunabwehr ohne Kollateralschaden

23.01.2017 | Biowissenschaften Chemie

Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

23.01.2017 | Physik Astronomie