Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018

Die Freisetzung von Stresshormonen löst zahlreiche unterschiedliche Reaktionen im Organismus aus. Einige dieser Reaktionen werden durch sogenannte Enhancer reguliert. Dies sind regulatorische Regionen im Genom, die die Aktivität von Genen beeinflussen können. Wissenschaftlerinnen und Wissenschaftler am Berliner Max-Planck-Institut für molekulare Genetik (MPIMG) haben jetzt herausgefunden, dass ein einzelner Enhancer in verschiedenen Zelltypen unterschiedliche Stressreaktionen regulieren kann. Dies ist möglich, da der Enhancer in unterschiedlichen Zelltypen die Produktion von verschiedenen Gentranskripten reguliert und dadurch zelltypspezifische Reaktionen auf Stress ermöglicht.

Das Herz pumpt schneller, die Atemfrequenz erhöht sich und der Blutdruck steigt. Dies alles sind Zeichen von akutem Stress. Während der Stressreaktion wird eine Mischung von Stresshormonen in den Blutkreislauf ausgeschüttet und zu den verschiedenen Geweben und Zelltypen unseres Körpers transportiert. Dadurch ist der gesamte Körper den Stresshormonen ausgesetzt.


In Knochenzellen aktiviert der Enhancer einen nahe gelegenen DNA-Abschnitt. In Lungenzellen wird ein Abschnitt aktiviert, der weit von dem Enhancer entfernt liegt.

S. Meijsing / Max-Planck-Institut für molekulare Genetik (MPIMG)

Aber obwohl alle Zellen mit Stresshormonen konfrontiert werden, antworten sie darauf mit einem breiten Spektrum an verschiedenen physiologischen Reaktionen. So werden beispielsweise in Fettzellen Energiereserven mobilisiert, während die Zellen des Immunsystems ihre Aktivität drosseln. Warum die Zellen so unterschiedlich auf die gleichen Stimuli reagieren können, obwohl sie alle das gleiche Genom besitzen, ist bisher weitgehend unklar.

Mit dieser Frage beschäftigen sich Sebastiaan Meijsing und sein Team am Max-Planck-Institut für molekulare Genetik (MPIMG) in Berlin. Es ist bekannt, dass viele physiologische Reaktionen auf Stress eine Folge von zelltypspezifischen Veränderungen der Genexpression sind. Beispielsweise können Zellen reagieren, indem sie die Anzahl an RNA-Abschriften (Transkripten) des Abschnitts der DNA, der bei Stress abgelesen wird, erhöhen oder erniedrigen.

Um genauer zu untersuchen, wie Zellen auf Stresssignale reagieren, entfernten die Forscherinnen und Forscher um Meijsing mithilfe von Genome-Editing Enhancer aus dem Genom von Lungenzellen und überprüften, wie die veränderten Zellen auf Stress reagierten. Auf diese Weise konnten sie mehrere Enhancer identifizieren, die für die stressinduzierten Veränderungen der Genexpression in diesem Zelltyp verantwortlich sind. Im nächsten Schritt untersuchten sie die Aktivität derselben Enhancer in einem anderen Zelltyp: Knochenzellen.

Zu ihrer Überraschung war ein spezifischer Enhancer in den Knochenzellen jedoch an der stressinduzierten Regulation anderer Gentranskripte beteiligt als in den Lungenzellen. In den Knochenzellen wurde bei Stress ein DNA-Abschnitt aktiviert, der in direkter Nähe zum Enhancer liegt. In den Lungenzellen wurde dagegen ein anderes Transkript aktiviert, das sich in großer Entfernung zu dem betreffenden Enhancer befindet.

„Stellen sie sich vor, sie hätten nur eine Steckdose, mit dem sie entweder ihren Toaster oder ihren Wasserkocher betreiben können“, erklärt Meijsing. „Beides würde funktionieren, sie müssen sich aber für ein Gerät entscheiden. So ähnlich ist die Situation in diesen zwei Zelltypen. Der von uns untersuchte Enhancer kann entweder den benachbarten oder den weiter entfernt liegenden DNA-Abschnitt aktivieren.“

Wie aber entscheidet der Enhancer, welcher der beiden Genomabschnitte in welcher Zelle aktiviert werden muss? Im Zuge der Zelldifferenzierung und Ausbildung spezifischer Zellarten kommt es auch zu Unterschieden bei der dreidimensionalen Faltung des Genoms. Solche Unterschiede in der Art, wie das Genom gefaltet ist, können Interaktionen zwischen Enhancern und Genen bzw. anderen DNA-Abschnitten erlauben oder einschränken.

„Für die von uns untersuchte Region gibt es Hinweise, dass die Faltung des Genoms in den Knochenzellen eine Wechselwirkung des Enhancers mit der benachbarten DNA-Region ermöglicht“, sagt Meijsing. „In den Lungenzellen dagegen ist das Genom so gefaltet, dass der Enhancer nur mit dem weiter entfernt liegenden Abschnitt der DNA interagieren kann. Eine solche „Wiederverwendung“ von bereits vorhandenen Enhancern für verschiedene Gene ermöglicht es dem Organismus, verschiedene Produkte als Reaktion auf Stress zu generieren. Solch eine unterschiedliche Nutzung derselben aktiven Enhancer in verschiedenen Zelltypen kann somit zu den vielfältigen physiologischen Stressreaktionen unseres Körpers beitragen.“

Weitere Informationen:

http://www.molgen.mpg.de/28837/Mechanismen_der_transkriptionellen_Regulation

Dr. Patricia Marquardt | Max-Planck-Institut für molekulare Genetik

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Krebsdiagnostik: Pinkeln statt Piksen?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Kugelmühlen statt Lösungsmittel: Nanographene mit Mechanochemie
25.05.2018 | Technische Universität Dresden

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Starke IT-Sicherheit für das Auto der Zukunft – Forschungsverbund entwickelt neue Ansätze

Je mehr die Elektronik Autos lenkt, beschleunigt und bremst, desto wichtiger wird der Schutz vor Cyber-Angriffen. Deshalb erarbeiten 15 Partner aus Industrie und Wissenschaft in den kommenden drei Jahren neue Ansätze für die IT-Sicherheit im selbstfahrenden Auto. Das Verbundvorhaben unter dem Namen „Security For Connected, Autonomous Cars (SecForCARs) wird durch das Bundesministerium für Bildung und Forschung mit 7,2 Millionen Euro gefördert. Infineon leitet das Projekt.

Bereits heute bieten Fahrzeuge vielfältige Kommunikationsschnittstellen und immer mehr automatisierte Fahrfunktionen, wie beispielsweise Abstands- und...

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Mit Hilfe molekularer Schalter lassen sich künftig neuartige Bauelemente entwickeln

Einem Forscherteam unter Führung von Physikern der Technischen Universität München (TUM) ist es gelungen, spezielle Moleküle mit einer angelegten Spannung zwischen zwei strukturell unterschiedlichen Zuständen hin und her zu schalten. Derartige Nano-Schalter könnten Basis für neuartige Bauelemente sein, die auf Silizium basierende Komponenten durch organische Moleküle ersetzen.

Die Entwicklung neuer elektronischer Technologien fordert eine ständige Verkleinerung funktioneller Komponenten. Physikern der TU München ist es im Rahmen...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: GRACE Follow-On erfolgreich gestartet: Das Satelliten-Tandem dokumentiert den globalen Wandel

Die Satellitenmission GRACE-FO ist gestartet. Am 22. Mai um 21.47 Uhr (MESZ) hoben die beiden Satelliten des GFZ und der NASA an Bord einer Falcon-9-Rakete von der Vandenberg Air Force Base (Kalifornien) ab und wurden in eine polare Umlaufbahn gebracht. Dort nehmen sie in den kommenden Monaten ihre endgültige Position ein. Die NASA meldete 30 Minuten später, dass der Kontakt zu den Satelliten in ihrem Zielorbit erfolgreich hergestellt wurde. GRACE Follow-On wird das Erdschwerefeld und dessen räumliche und zeitliche Variationen sehr genau vermessen. Sie ermöglicht damit präzise Aussagen zum globalen Wandel, insbesondere zu Änderungen im Wasserhaushalt, etwa dem Verlust von Eismassen.

Potsdam, 22. Mai 2018: Die deutsch-amerikanische Satellitenmission GRACE-FO (Gravity Recovery And Climate Experiment Follow On) ist erfolgreich gestartet. Am...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Im Fokus: Klimaangepasste Pflanzen

25.05.2018 | Veranstaltungen

Größter Astronomie-Kongress kommt nach Wien

24.05.2018 | Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Berufsausbildung mit Zukunft

25.05.2018 | Unternehmensmeldung

Untersuchung der Zellmembran: Forscher entwickeln Stoff, der wichtigen Membranbestandteil nachahmt

25.05.2018 | Interdisziplinäre Forschung

Starke IT-Sicherheit für das Auto der Zukunft – Forschungsverbund entwickelt neue Ansätze

25.05.2018 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics