Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Urbakterien heute noch überleben

18.12.2015

Sie besiedelten die Erde lange bevor es Pflanzen und Tiere gab: Seit Milliarden von Jahren nutzen bestimmte Mikroorganismen nicht Sauerstoff zum Atmen, sondern Sulfat. Bislang war nicht vollständig verstanden, auf welchem biochemischen Weg diese zumeist im Meer vorkommenden Bakterien durch Atmung Energie für ihr Wachstum gewinnen. Ein internationales Forscherteam unter Federführung portugiesischer Wissenschaftler aus Lissabon und unter Beteiligung der Universität Bonn hat nun diesen fehlenden Schritt entschlüsselt. Die Ergebnisse erscheinen nun im renommierten Fachjournal „Science“.

Wer bei einer Wattwanderung mit den Gummistiefeln im Schlick herumstreift, riecht es sofort: den Geruch nach faulen Eiern. Er rührt von Schwefelwasserstoff her, den winzige Bakterien im Meeressediment produzieren.


Privatdozentin Dr. Christiane Dahl und Dr. Fabian Grein am Anaerobenzelt im Labor des Instituts für Mikrobiologie & Biotechnologie der Universität Bonn.

(c) Foto: Barbara Frommann/Uni Bonn

„Es handelt sich dabei um einen uralten Prozess, der schon vor mehr als drei Milliarden Jahren funktionierte – lange bevor erste Pflanzen und Tiere unseren Planeten besiedelten“, berichtet Privatdozentin Dr. Christiane Dahl vom Institut für Mikrobiologie & Biotechnologie der Universität Bonn. Mit den Cyanobakterien und später den grünen Pflanzen kam der Sauerstoff auf die Erde - doch auch schon vorher erschlossen sich Mikroorganismen durch Atmung Energie. Statt Sauerstoff nutzten sie Sulfat, dass sie zu übel riechendem Schwefelwasserstoff reduzierten.

„Im Meerwasser ist Sulfat in etwa 100-fach höherer Konzentration gelöst als Sauerstoff“, sagt Dr. Dahl. Überall wo Sulfat reichlich vorhanden und Sauerstoff knapp ist, kommen Bakterien und Archaebakterien vor, die auf diese „Sulfatatmung“ spezialisiert sind: Neben den Meeres- auch in Vulkanregionen. Bisher ging die Wissenschaft davon aus, dass es auf dem Weg vom Sulfat zum Schwefelwasserstoff nur drei Schritte gibt. Einer dieser Schritte ist die Reduktion von Sulfit, an dem das Enzym Sulfitreduktase (DsrAB) beteiligt ist.

Eine Voraussetzung für Energiegewinnung durch Atmung ist, dass Membranen in den lebenden Zellen wie eine Batterie aufgeladen werden. „Allerdings war bislang nicht klar, welcher Schritt der Sulfatatmung an eine bakterielle Zellmembran gekoppelt ist“, berichtet die Mikrobiologin der Universität Bonn. Unter der Federführung von Wissenschaftlern um Prof. Dr. Inês A. C. Pereira von der Universidade Nova de Lisboa in Portugal und unter Beteiligung von Dr. Dahl hat ein Forscherteam nun den fehlenden vierten Schritt entdeckt.

Eine Brücke aus Schwefelatomen

Das Forscherteam untersuchte diesen wichtigen Prozess am Urbakterium Archaeoglobus fulgidus, das vor allem in Vulkangebieten vorkommt. Der aus dem Sulfit stammende Schwefel wird gar nicht sofort von der Sulfitreduktase als Schwefelwasserstoff freigesetzt, sondern erst einmal vom Protein DsrC wie in einer Brücke zwischen zwei Schwefelatomen festgehalten. Ein weiteres Protein in der Zellmembran des Bakteriums setzt den Schwefel wieder frei. Dabei wird die Membran aufgeladen und Energie für das Wachstum der Mikroorganismen zur Verfügung gestellt. „Das ist der bislang unbekannte, aber umso wichtigere biochemische Schritt bei der Energiegewinnung durch Atmung“, sagt Dr. Dahl.

Dr. Fabian Grein, der bei Dr. Dahl an der Universität Bonn promovierte, wies während seiner Postdoc-Phase im Labor von Prof. Pereira in Lissabon nach, dass das im Reagenzglas untersuchte Prinzip genauso in sulfatatmendenden Mikroorganismen abläuft - wie etwa dem Bakterium Desulfovibrio vulgaris. „Wenn wir das DsrC-Protein in seiner Menge herunterregelten, dann wuchs das Bakterium deutlich schlechter, weil die Sulfatatmung stark eingeschränkt war“, berichtet Dr. Grein.

„Dieses Bakterium ist von besonderer Bedeutung, da es auch im menschlichen Verdauungstrakt vorkommt und hier entzündliche Erkrankungen hervorrufen kann“, führt Dr. Grein aus. Der intensive Austausch junger Forscher zwischen den Universitäten Lissabon und Bonn war eine wesentliche Voraussetzung dafür, die komplexen biochemischen Vorgänge gemeinsam aufzuklären.

Die Wissenschaftler gehen davon aus, dass sie ein universelles Prinzip entdeckt haben, das bei allen sulfatatmenden Bakterien vorkommt. In vielen alten Gesteinen sind heute noch Spuren von Mikroorganismen feststellbar, die schon lebten als auf der Erde die Sauerstoffatmung noch nicht erfunden war. „Je besser wir diese Milliarden Jahre alten Prozesse verstehen, umso besser können wir diese Spuren aus der frühen Erdgeschichte lesen“, sagt die Mikrobiologin der Universität Bonn. Darüber hinaus ist Schwefel auch für den Menschen ein lebensnotwendiger Nährstoff, den er mit Aminosäuren aufnimmt. Dr. Dahl: „Die verbreiteten Mikroorganismen sorgen durch ihre Sulfatatmung mit dafür, dass Schwefelformen recycled werden, die für die menschliche Ernährung wichtig sind.“

Publikation: A protein trisulfide couples dissimilatory sulfate reduction to energy conservation, Fachjournal “Science”, DOI: 10.1126/science.aad3558

Kontakt für die Medien:

Privatdozentin Dr. Christiane Dahl
Institut für Mikrobiologie & Biotechnologie
Universität Bonn
Tel. 0228/732119
E-Mail: ChDahl@uni-bonn.de

Johannes Seiler | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-bonn.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Kompositmaterial für die Wasseraufbereitung
18.01.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Kieselalge in der Antarktis liest je nach Umweltbedingungen verschiedene Varianten seiner Gene ab
17.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Geothermie: Den Sommer im Winter ernten

18.01.2017 | Energie und Elektrotechnik

Kompositmaterial für die Wasseraufbereitung

18.01.2017 | Biowissenschaften Chemie

Brain-Computer-Interface: Wenn der Computer uns intuitiv versteht

18.01.2017 | Informationstechnologie