Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Tumore sich anpassen

02.07.2014

Wissenschaftler der UMG entdecken Schlüsselmechanismus der Chromosomen-Fehlverteilung und chromosomaler Instabilität in Krebszellen. Veröffentlicht am 29. Juni 2014 in NATURE CELL BIOLOGY online.

Krebszellen besitzen eine Eigenschaft, die es schwer macht, sie zu bekämpfen: Sie können sich gut anpassen.


Normale Zelle: korrekte Ausbildung der Mikrotubuli des Spindelapparats und Gleichverteilung der Chromosomen (blau). Krebszelle: : ungeordnete Ausbildung der Mikrotubuli. umg

H. Bastians


Professor Dr. Holger Bastians, Institut für Molekulare Onkologie der UMG, mit den beiden Erstautoren der Studie Dr. Norman Ertych und Dr. Ailine Stolz ( Institut für Molekulare Onkologie der UMG) umg

Ein internationales Forscherteam unter der Leitung von Professor Dr. Holger Bastians, Wissenschaftler am Institut für Molekulare Onkologie (Direktor: Prof. Dr. Matthias Dobbelstein) der Universitätsmedizin Göttingen (UMG) und am Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), hat jetzt in Darmkrebszellen einen Schlüsselmechanismus entdeckt, dessen Defekte die Grundlage von Chromosomen-Fehlverteilungen sind. Diese Fehlverteilungen begünstigen, dass der Krebs Metastasen bildet oder Resistenzen gegenüber Behandlungsmethoden bildet.

Grund dafür ist die so genannte chromosomale Instabilität: Dabei geben die Tumorzellen bei jeder Zellteilung ganze Chromosomen fehlerhaft an ihre Tochterzellen weiter.

Den Wissenschaftlern ist es gelungen, den Mechanismus der Chromosomen-Fehlverteilungen in menschlichen Tumorzellen zu unterdrücken. Sie konnten damit die stetige Veränderung des Genoms in chromosomal instabilen Krebszellen stoppen. Die Ergebnisse könnten dabei helfen, Krebs besser zu behandeln, indem die Anpassungsfähigkeit von Tumoren und die Entwicklung von Therapie-Resistenzen unterdrückt werden.

Die Studie basiert auf einer engen Zusammenarbeit von Zellbiologen, Humangenetikern, Pharmakologen und Pathologen aus Göttingen, Leipzig, Heidelberg und Seattle (USA). Sie wurde am 29. Juni 2014 in der online-Ausgabe des englischen Wissenschaftsjournals Nature Cell Biology publiziert.

Originalpublikation: Norman Ertych, Ailine Stolz, Albrecht Stenzinger, Wilko Weichert, Silke Kaulfuß, Peter Burfeind, Achim Aigner, Linda Wordeman, Holger Bastians (2014): Increased microtubule assembly rates influence chromosomal instability in colorectal cancer cells. Nature Cell Biology, doi 10.1038/ncb2994.

Die chromosomale Instabilität von Tumorzellen führt dazu, dass menschliche Zellen nicht mehr den normalen Chromosomensatz von 46 aufweisen, sondern einzelne Chromosomen zu viel oder zu wenig besitzen. Die Zellen sind dann aneuploid. Ein bekanntes Beispiel für eine einfache Aneuploidie ist die Trisomie des Chromosoms 21, die zum Down-Syndrom führt. Im Gegensatz zum Down-Syndrom zeigen Krebszellen hochgradige Aneuploidie. Das heißt, es sind mehrere Chromosomen betroffen. Dieses Phänomen ist bereits seit über 100 Jahren bekannt. Seither untersuchen viele Krebsforscher die molekulare Grundlage der Chromosomen-Fehlverteilung, die zu den zentralen, noch ungeklärten Fragen der Tumorforschung gehört.

ERGEBNISSE DER STUDIE
Bei jeder Zellteilung wird zunächst die Erbinformation dupliziert und die verdoppelten Chromosomen werden anschließend gleichmäßig auf zwei Tochterzellen verteilt. Der Vorgang der Chromosomen-Verteilung erfolgt in einem komplexen Prozess, der als Mitose bezeichnet wird. In der Mitose werden alle Chromosomen mit Hilfe von beweglichen Fasern, den sogenannten Mikrotubuli, an den Spindelapparat angeheftet und in der Mitte der Zelle aufgereiht. Das ist notwendig, damit die Chromosomen anschließend ordnungsgemäß voneinander getrennt und gleichmäßig auf die zwei Tochterzellen verteilt werden können.

In Krebszellen verläuft dieser Prozess offenbar fehlerhaft. Welche Defekte dafür genau verantwortlich sind, ist bisher unklar. Professor Bastians und sein Team haben hier neue Erkenntnisse gewonnen. So reichen geringfügige Veränderungen der Beweglichkeit von Spindel-Mikrotubuli aus, um zu fehlerhaften Anheftungen der Chromosomen an den mitotischen Spindelapparat und zu Chromosomen-Fehlverteilungen zu führen. Mit Hilfe von Mikroskopie-Experimenten in lebenden Zellen entdeckten die beiden Erstautoren der Studie, Dr. Norman Ertych und Dr. Ailine Stolz vom Institut für Molekulare Onkologie der UMG, in verschiedenen Krebszellen erhöhte Wachstumsraten der einzelnen Spindel-Mikrotubuli. Das bedeutet: Eine veränderte Dynamik der Mikrotubuli in der Mitose führt direkt zu Chromosomen-Fehlverteilungen in Krebszellen.

Welche genetischen Veränderungen in Tumorzellen führen zu einer erhöhten Mikrotubuli-Dynamik und damit zu Chromosomen-Fehlverteilungen?

Dieser Frage sind die Forscher nachgegangen. „Wir haben uns zunächst auf den Darmkrebs konzentriert, weil es bei dieser Erkrankung besonders oft zu Chromosomen-Fehlverteilungen kommt“, sagt Dr. Ailine Stolz. „Wir haben systematisch die genetischen Veränderungen, die am häufigsten auftreten, und ihren Einfluss auf die Mikrotubuli-Dynamik untersucht.“ Dabei konnte das Forscherteam zeigen, dass ein erhöhtes Level des Tumor-fördernden (onkogenen) Proteins Aurora-A, sowie der Verlust der Tumor-hemmenden (Tumor-suppressiven) Proteine Chk2 oder Brca1 zu einer erhöhten Mikrotubuli-Dynamik und zu Chromosomen-Fehlverteilungen führen.

In einer Zusammenarbeit mit Professor Wilko Weichert und Dr. Albrecht Stenzinger vom Pathologischen Institut der Universität Heidelberg konnten die Wissenschaftler bestätigen, dass diese genetischen Veränderungen bei rund 70 Prozent der Gewebeschnitte von Darmkrebs-Patienten nachweisbar sind. Es sind also entweder erhöhte Mengen des Aurora-A Onkogens oder ein Verlust der Tumor-Suppressoren Chk2 oder Brca1, die eine Veränderung der Mikrotubuli-Dynamik und eine chromosomale Instabilität auslösen können.

„Weitere Untersuchungen werden nun zeigen müssen, ob diese genetischen Veränderungen auch bei anderen Krebsarten eine Bedeutung haben. Wäre dies der Fall, könnte die gezielte Unterdrückung der chromosomalen Instabilität ganz neue therapeutische Optionen bei der Behandlung von Krebs liefern“, sagt Professor Bastians.

„Wir haben die Erkenntnis, dass eine erhöhte Mikrotubuli-Dynamik eine chromosomale Instabilität und damit eine erhöhte Anpassungsfähigkeit der Tumoren auslösen kann. Das lässt vermuten, dass eine Wiederherstellung einer normalen Mikrotubuli-Dynamik sowohl die stetige Genomveränderung als auch die Tumorzell-Adaption stoppen könnte“, sagt Dr. Norman Ertych.

Dieser These sind die Forscher nachgegangen und haben einen Weg gefunden, die erhöhte Mikrotubuli-Dynamik zu hemmen. Eine Hemmung einer Mikrotubuli-Polymerase, die für das Wachstum der Mikrotubuli verantwortlich ist, stellt beispielsweise eine normale Mikrotubuli-Dynamik wieder her und stoppt die Chromosomen-Fehlverteilungen.

„Leider gibt es bisher noch keine pharmakologischen Hemmstoffe für diese Mikrotubuli-Polymerase, die man therapeutisch einsetzen könnte. Wir werden diese Richtung jedoch weiterverfolgen“, sagt Professor Bastians. „Wir müssen noch mehr über die molekularen Mechanismen lernen, wie die Mikrotubuli-Dynamik in der Mitose gesteuert wird, um neue therapeutische Zielstrukturen zu identifizieren und so neue Behandlungsansätze zu entwickeln.“

Eine therapeutische Wiederherstellung einer normalen Mikrotubuli-Dynamik und damit die Hemmung der Chromosomen-Fehlverteilungen in Tumorzellen stellt einen neuen vielversprechenden Ansatz dar, um die Metastasierung von Tumoren und die Entwicklung von Therapie-Resistenzen zu verhindern.

Stefan Weller | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Dichtes Gefäßnetz reguliert Bildung von Thrombozyten im Knochenmark
25.07.2017 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht Welcher Scotch ist es?
25.07.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

Gipfeltreffen der String-Mathematik: Internationale Konferenz StringMath 2017

24.07.2017 | Veranstaltungen

Von atmosphärischen Teilchen bis hin zu Polymeren aus nachwachsenden Rohstoffen

24.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

IT-Experten entdecken Chancen für den Channel-Markt

25.07.2017 | Unternehmensmeldung

Erst hot dann Schrott! – Elektronik-Überhitzung effektiv vorbeugen

25.07.2017 | Seminare Workshops

Dichtes Gefäßnetz reguliert Bildung von Thrombozyten im Knochenmark

25.07.2017 | Biowissenschaften Chemie