Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie sich Wunden schließen

24.02.2015

Heidelberger Wissenschaftler entschlüsseln molekularen Mechanismus der kollektiven Zellmigration, der etwa für die Wundheilung von Bedeutung ist

Damit Wunden sich wieder verschließen können, müssen Zellen sich gemeinsam und koordiniert in eine Richtung bewegen. Bislang war der zentrale molekulare Mechanismus, mit dem Zellen diese Bewegungen über größere Entfernungen koordinieren können, unklar – Wissenschaftler der Universität Heidelberg und des Stuttgarter Max-Planck-Instituts für intelligente Systeme konnten ihn nun entschlüsseln. Diese kollektive Zellmigration spielt nicht nur bei der Wundheilung eine wichtige Rolle, sondern ebenso bei der Embryonalentwicklung oder auch bei der Entwicklung von Krebs. Die Forschungsergebnisse, die in der Fachzeitschrift „Nature Cell Biology“ veröffentlicht wurden, sind daher für alle drei Bereiche von großer Bedeutung.


Epithelzellen bewegen sich aus einer ursprünglichen Form (links) kollektiv in die Umgebung (rechts). Die Lokalisation von Merlin ist grün markiert, rot zeigt die Zellkerne.

Abbildung: Max-Planck-Institut für Intelligente Systeme

„Die kollektive Bewegung von Zellen und biologischen Systemen ist eines der wichtigsten natürlichen Phänomene und kommt auf verschiedenen Ebenen und Längenskalen der Natur vor. Wir haben nun den molekularen Hauptakteur und den entsprechenden Mechanismus identifiziert, der die kollektive Migration von Epithelzellen, also Zellen des Deckgewebes von Haut, steuert“, erklärt Prof. Dr. Joachim Spatz vom Physikalisch-Chemischen Institut der Universität Heidelberg und dem Max-Planck-Institut für Intelligente Systeme. In ihrer Untersuchung stellen die Wissenschaftler einen vollständigen molekularen Mechanismus vor, der sich auf das Protein Merlin konzentriert. Die Ergebnisse stellen eine Verbindung von mechanischen Kräften innerhalb der Zelle zu kollektiven Zellbewegungen her und zeigen auch, wie lokale Interaktion eine kollektive Dynamik auf der multizellulären Ebene bewirkt. „Damit schaffen sie eine Analogie zu dem, was man bereits von den kollektiven Bewegungen weiß, die sich in der biologischen und physikalischen Welt beobachten lassen“, erklärt Prof. Spatz.

Den Vorgang der Zellmigration vergleicht der Wissenschaftler mit den Abläufen bei einem Marathon: „Auf der Ebene des gesamten Organismus versucht ein Individuum in einer Menge ganz bewusst, seine Bewegungen an denen seiner Nachbarn auszurichten, wofür Wahrnehmung und Aktion miteinander in Einklang gebracht werden müssen.“ Innerhalb eines Zellkollektivs sind diese beiden Vorgänge durch Signalübertragungswege miteinander verbunden. In einem Zellkollektiv gibt es eine Führungszelle, ähnlich dem Führenden in einem Marathonlauf. Sie ist mit den ihr folgenden Zellen mechanisch durch Zell-Zell-Kontakte verbunden. Durch das Voranlaufen der Führungszelle wird mechanische Spannung auf die Verfolgerzellen ausgeübt, wie Joachim Spatz erläutert. Diese mechanische Spannung nimmt das Protein Merlin wahr und initiiert die räumlich polarisierte Verfolgungsbewegung. So wird die mechanische Spannung im Verfolgerfeld von einer Zelle zur nächsten weitergegeben. Die Verfolgerzellen reagieren darauf mit der Ausbildung von „Bein“-artigen Ausstülpungen in Richtung der Führungszelle, um sich nach vorne zu bewegen.

„Unklar war bisher, durch welche molekulare Verbindung diese beiden Ereignisse, Wahrnehmung und Aktion, verbunden sind“, sagt Joachim Spatz. „Dazu zeigt nun unsere Studie, wie Merlin als ein mechanosensitives Protein zelluläre Kräfte in kollektive Zellbewegungen umwandelt, indem es als mechanisch-chemischer Signalumwandler agiert. Erstaunlich ist dabei, dass Merlin das einzige Protein in dem verantwortlichen Signalnetzwerk ist, welches diese Eigenschaft in Zellkollektiven vermittelt – dass es also keine Ersatzmechanismen gibt. Fällt Merlin aus, verlieren Zellen die Fähigkeit, sich kollektiv zu bewegen, und verursachen die damit verbundenen medizinisch relevanten, pathophysiologischen Merkmale von Organismen.“

So ist der Hauptakteur der Studie, Merlin, auch ein bekannter Tumorsuppressor, der für verschiedene Krebsarten verantwortlich ist. Zudem ist Merlin an der Steuerung des sogenannten Hippo-Signalwegs beteiligt, einem für die Biologie wichtigen Signalweg, der die Vermehrung von Zellen und die Größe von Organen steuert und seit dem Auftreten von frühen Vielzellern evolutionär konserviert wurde. „Es ist spannend zu sehen, dass es mit dem von Merlin vermittelten Signalmechanismus eine Verbindung zwischen diesen scheinbar ungleichen Aspekten zu geben scheint“, sagt der Forscher.
An der Studie waren auch Wissenschaftler des Hamamatsu Tissue Imaging and Analysis (TIGA) Center am BioQuant-Zentrum der Ruperto Carola sowie des Nationalen Centrums für Tumorerkrankungen (NCT) Heidelberg beteiligt.

Originalveröffentlichung:
T. Das, K. Safferling, S. Rausch, N. Grabe, H. Boehm, J. Spatz: A molecular mechanotransduction pathway regulates collective migration of epithelial cells. Nature Cell Biology (published online 23 February 2015), doi: 10.1038/ncb3115

Kontakt:
Prof. Dr. Joachim Spatz
Physikalisch-Chemisches Institut
Tel. +49 6221 54-4942
joachim.spatz@urz.uni-heidelberg.de

Kommunikation und Marketing
Pressestelle
Tel. +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-heidelberg.de

Weitere Berichte zu: Biology Cell Nature Cell Biology Spannung Spatz Wunden Zellbewegungen Zelle Zellen Zellmigration protein

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Einzelne Proteine bei der Arbeit beobachten
08.12.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Herz-Bindegewebe unter Strom
08.12.2016 | Universitäts-Herzzentrum Freiburg - Bad Krozingen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einzelne Proteine bei der Arbeit beobachten

08.12.2016 | Biowissenschaften Chemie

Intelligente Filter für innovative Leichtbaukonstruktionen

08.12.2016 | Messenachrichten

Seminar: Ströme und Spannungen bedarfsgerecht schalten!

08.12.2016 | Seminare Workshops