Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie sich Wunden schließen

24.02.2015

Heidelberger Wissenschaftler entschlüsseln molekularen Mechanismus der kollektiven Zellmigration, der etwa für die Wundheilung von Bedeutung ist

Damit Wunden sich wieder verschließen können, müssen Zellen sich gemeinsam und koordiniert in eine Richtung bewegen. Bislang war der zentrale molekulare Mechanismus, mit dem Zellen diese Bewegungen über größere Entfernungen koordinieren können, unklar – Wissenschaftler der Universität Heidelberg und des Stuttgarter Max-Planck-Instituts für intelligente Systeme konnten ihn nun entschlüsseln. Diese kollektive Zellmigration spielt nicht nur bei der Wundheilung eine wichtige Rolle, sondern ebenso bei der Embryonalentwicklung oder auch bei der Entwicklung von Krebs. Die Forschungsergebnisse, die in der Fachzeitschrift „Nature Cell Biology“ veröffentlicht wurden, sind daher für alle drei Bereiche von großer Bedeutung.


Epithelzellen bewegen sich aus einer ursprünglichen Form (links) kollektiv in die Umgebung (rechts). Die Lokalisation von Merlin ist grün markiert, rot zeigt die Zellkerne.

Abbildung: Max-Planck-Institut für Intelligente Systeme

„Die kollektive Bewegung von Zellen und biologischen Systemen ist eines der wichtigsten natürlichen Phänomene und kommt auf verschiedenen Ebenen und Längenskalen der Natur vor. Wir haben nun den molekularen Hauptakteur und den entsprechenden Mechanismus identifiziert, der die kollektive Migration von Epithelzellen, also Zellen des Deckgewebes von Haut, steuert“, erklärt Prof. Dr. Joachim Spatz vom Physikalisch-Chemischen Institut der Universität Heidelberg und dem Max-Planck-Institut für Intelligente Systeme. In ihrer Untersuchung stellen die Wissenschaftler einen vollständigen molekularen Mechanismus vor, der sich auf das Protein Merlin konzentriert. Die Ergebnisse stellen eine Verbindung von mechanischen Kräften innerhalb der Zelle zu kollektiven Zellbewegungen her und zeigen auch, wie lokale Interaktion eine kollektive Dynamik auf der multizellulären Ebene bewirkt. „Damit schaffen sie eine Analogie zu dem, was man bereits von den kollektiven Bewegungen weiß, die sich in der biologischen und physikalischen Welt beobachten lassen“, erklärt Prof. Spatz.

Den Vorgang der Zellmigration vergleicht der Wissenschaftler mit den Abläufen bei einem Marathon: „Auf der Ebene des gesamten Organismus versucht ein Individuum in einer Menge ganz bewusst, seine Bewegungen an denen seiner Nachbarn auszurichten, wofür Wahrnehmung und Aktion miteinander in Einklang gebracht werden müssen.“ Innerhalb eines Zellkollektivs sind diese beiden Vorgänge durch Signalübertragungswege miteinander verbunden. In einem Zellkollektiv gibt es eine Führungszelle, ähnlich dem Führenden in einem Marathonlauf. Sie ist mit den ihr folgenden Zellen mechanisch durch Zell-Zell-Kontakte verbunden. Durch das Voranlaufen der Führungszelle wird mechanische Spannung auf die Verfolgerzellen ausgeübt, wie Joachim Spatz erläutert. Diese mechanische Spannung nimmt das Protein Merlin wahr und initiiert die räumlich polarisierte Verfolgungsbewegung. So wird die mechanische Spannung im Verfolgerfeld von einer Zelle zur nächsten weitergegeben. Die Verfolgerzellen reagieren darauf mit der Ausbildung von „Bein“-artigen Ausstülpungen in Richtung der Führungszelle, um sich nach vorne zu bewegen.

„Unklar war bisher, durch welche molekulare Verbindung diese beiden Ereignisse, Wahrnehmung und Aktion, verbunden sind“, sagt Joachim Spatz. „Dazu zeigt nun unsere Studie, wie Merlin als ein mechanosensitives Protein zelluläre Kräfte in kollektive Zellbewegungen umwandelt, indem es als mechanisch-chemischer Signalumwandler agiert. Erstaunlich ist dabei, dass Merlin das einzige Protein in dem verantwortlichen Signalnetzwerk ist, welches diese Eigenschaft in Zellkollektiven vermittelt – dass es also keine Ersatzmechanismen gibt. Fällt Merlin aus, verlieren Zellen die Fähigkeit, sich kollektiv zu bewegen, und verursachen die damit verbundenen medizinisch relevanten, pathophysiologischen Merkmale von Organismen.“

So ist der Hauptakteur der Studie, Merlin, auch ein bekannter Tumorsuppressor, der für verschiedene Krebsarten verantwortlich ist. Zudem ist Merlin an der Steuerung des sogenannten Hippo-Signalwegs beteiligt, einem für die Biologie wichtigen Signalweg, der die Vermehrung von Zellen und die Größe von Organen steuert und seit dem Auftreten von frühen Vielzellern evolutionär konserviert wurde. „Es ist spannend zu sehen, dass es mit dem von Merlin vermittelten Signalmechanismus eine Verbindung zwischen diesen scheinbar ungleichen Aspekten zu geben scheint“, sagt der Forscher.
An der Studie waren auch Wissenschaftler des Hamamatsu Tissue Imaging and Analysis (TIGA) Center am BioQuant-Zentrum der Ruperto Carola sowie des Nationalen Centrums für Tumorerkrankungen (NCT) Heidelberg beteiligt.

Originalveröffentlichung:
T. Das, K. Safferling, S. Rausch, N. Grabe, H. Boehm, J. Spatz: A molecular mechanotransduction pathway regulates collective migration of epithelial cells. Nature Cell Biology (published online 23 February 2015), doi: 10.1038/ncb3115

Kontakt:
Prof. Dr. Joachim Spatz
Physikalisch-Chemisches Institut
Tel. +49 6221 54-4942
joachim.spatz@urz.uni-heidelberg.de

Kommunikation und Marketing
Pressestelle
Tel. +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-heidelberg.de

Weitere Berichte zu: Biology Cell Nature Cell Biology Spannung Spatz Wunden Zellbewegungen Zelle Zellen Zellmigration protein

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Medikamente aus der CLOUD: Neuer Standard für die Suche nach Wirkstoffkombinationen
23.05.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

nachricht Mikro-Lieferservice für Dünger
23.05.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium 2017: Internet of Production für agile Unternehmen

23.05.2017 | Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Medikamente aus der CLOUD: Neuer Standard für die Suche nach Wirkstoffkombinationen

23.05.2017 | Biowissenschaften Chemie

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungsnachrichten

CAST-Projekt setzt Dunkler Materie neue Grenzen

23.05.2017 | Physik Astronomie