Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie sich Wunden schließen

24.02.2015

Heidelberger Wissenschaftler entschlüsseln molekularen Mechanismus der kollektiven Zellmigration, der etwa für die Wundheilung von Bedeutung ist

Damit Wunden sich wieder verschließen können, müssen Zellen sich gemeinsam und koordiniert in eine Richtung bewegen. Bislang war der zentrale molekulare Mechanismus, mit dem Zellen diese Bewegungen über größere Entfernungen koordinieren können, unklar – Wissenschaftler der Universität Heidelberg und des Stuttgarter Max-Planck-Instituts für intelligente Systeme konnten ihn nun entschlüsseln. Diese kollektive Zellmigration spielt nicht nur bei der Wundheilung eine wichtige Rolle, sondern ebenso bei der Embryonalentwicklung oder auch bei der Entwicklung von Krebs. Die Forschungsergebnisse, die in der Fachzeitschrift „Nature Cell Biology“ veröffentlicht wurden, sind daher für alle drei Bereiche von großer Bedeutung.


Epithelzellen bewegen sich aus einer ursprünglichen Form (links) kollektiv in die Umgebung (rechts). Die Lokalisation von Merlin ist grün markiert, rot zeigt die Zellkerne.

Abbildung: Max-Planck-Institut für Intelligente Systeme

„Die kollektive Bewegung von Zellen und biologischen Systemen ist eines der wichtigsten natürlichen Phänomene und kommt auf verschiedenen Ebenen und Längenskalen der Natur vor. Wir haben nun den molekularen Hauptakteur und den entsprechenden Mechanismus identifiziert, der die kollektive Migration von Epithelzellen, also Zellen des Deckgewebes von Haut, steuert“, erklärt Prof. Dr. Joachim Spatz vom Physikalisch-Chemischen Institut der Universität Heidelberg und dem Max-Planck-Institut für Intelligente Systeme. In ihrer Untersuchung stellen die Wissenschaftler einen vollständigen molekularen Mechanismus vor, der sich auf das Protein Merlin konzentriert. Die Ergebnisse stellen eine Verbindung von mechanischen Kräften innerhalb der Zelle zu kollektiven Zellbewegungen her und zeigen auch, wie lokale Interaktion eine kollektive Dynamik auf der multizellulären Ebene bewirkt. „Damit schaffen sie eine Analogie zu dem, was man bereits von den kollektiven Bewegungen weiß, die sich in der biologischen und physikalischen Welt beobachten lassen“, erklärt Prof. Spatz.

Den Vorgang der Zellmigration vergleicht der Wissenschaftler mit den Abläufen bei einem Marathon: „Auf der Ebene des gesamten Organismus versucht ein Individuum in einer Menge ganz bewusst, seine Bewegungen an denen seiner Nachbarn auszurichten, wofür Wahrnehmung und Aktion miteinander in Einklang gebracht werden müssen.“ Innerhalb eines Zellkollektivs sind diese beiden Vorgänge durch Signalübertragungswege miteinander verbunden. In einem Zellkollektiv gibt es eine Führungszelle, ähnlich dem Führenden in einem Marathonlauf. Sie ist mit den ihr folgenden Zellen mechanisch durch Zell-Zell-Kontakte verbunden. Durch das Voranlaufen der Führungszelle wird mechanische Spannung auf die Verfolgerzellen ausgeübt, wie Joachim Spatz erläutert. Diese mechanische Spannung nimmt das Protein Merlin wahr und initiiert die räumlich polarisierte Verfolgungsbewegung. So wird die mechanische Spannung im Verfolgerfeld von einer Zelle zur nächsten weitergegeben. Die Verfolgerzellen reagieren darauf mit der Ausbildung von „Bein“-artigen Ausstülpungen in Richtung der Führungszelle, um sich nach vorne zu bewegen.

„Unklar war bisher, durch welche molekulare Verbindung diese beiden Ereignisse, Wahrnehmung und Aktion, verbunden sind“, sagt Joachim Spatz. „Dazu zeigt nun unsere Studie, wie Merlin als ein mechanosensitives Protein zelluläre Kräfte in kollektive Zellbewegungen umwandelt, indem es als mechanisch-chemischer Signalumwandler agiert. Erstaunlich ist dabei, dass Merlin das einzige Protein in dem verantwortlichen Signalnetzwerk ist, welches diese Eigenschaft in Zellkollektiven vermittelt – dass es also keine Ersatzmechanismen gibt. Fällt Merlin aus, verlieren Zellen die Fähigkeit, sich kollektiv zu bewegen, und verursachen die damit verbundenen medizinisch relevanten, pathophysiologischen Merkmale von Organismen.“

So ist der Hauptakteur der Studie, Merlin, auch ein bekannter Tumorsuppressor, der für verschiedene Krebsarten verantwortlich ist. Zudem ist Merlin an der Steuerung des sogenannten Hippo-Signalwegs beteiligt, einem für die Biologie wichtigen Signalweg, der die Vermehrung von Zellen und die Größe von Organen steuert und seit dem Auftreten von frühen Vielzellern evolutionär konserviert wurde. „Es ist spannend zu sehen, dass es mit dem von Merlin vermittelten Signalmechanismus eine Verbindung zwischen diesen scheinbar ungleichen Aspekten zu geben scheint“, sagt der Forscher.
An der Studie waren auch Wissenschaftler des Hamamatsu Tissue Imaging and Analysis (TIGA) Center am BioQuant-Zentrum der Ruperto Carola sowie des Nationalen Centrums für Tumorerkrankungen (NCT) Heidelberg beteiligt.

Originalveröffentlichung:
T. Das, K. Safferling, S. Rausch, N. Grabe, H. Boehm, J. Spatz: A molecular mechanotransduction pathway regulates collective migration of epithelial cells. Nature Cell Biology (published online 23 February 2015), doi: 10.1038/ncb3115

Kontakt:
Prof. Dr. Joachim Spatz
Physikalisch-Chemisches Institut
Tel. +49 6221 54-4942
joachim.spatz@urz.uni-heidelberg.de

Kommunikation und Marketing
Pressestelle
Tel. +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-heidelberg.de

Weitere Berichte zu: Biology Cell Nature Cell Biology Spannung Spatz Wunden Zellbewegungen Zelle Zellen Zellmigration protein

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

nachricht Schimpansen belohnen Gefälligkeiten
23.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften