Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie sich natürliche Kanalproteine in künstlichen Membranen bewegen

03.06.2015

In künstlichen Membranen werden jeweils natürliche Kanalproteine eingebaut, um den Transport von Ionen und Molekülen sicherzustellen. Forschende der Universität Basel haben nun erstmals die Bewegung dieser Kanalproteine gemessen: Sie bewegen sich höchstens zehnmal langsamer als in ihrer natürlichen Umgebung, der Zellmembran. Die Erkenntnisse helfen der Weiterentwicklung von neuen Anwendungen wie Nanoreaktoren und künstlichen Organellen, berichten die Forschenden in der Fachzeitschrift «Nano Letters».

Die Membranen unserer Körperzellen sind nur etwa 4 bis 5 Nanometer dick und bestehen aus einer komplexen Mischung von Lipiden und spezifischen Membranproteinen, darunter Kanalproteinen.


Natürliche Kanalproteine bewegen sich seitlich in einer dicken künstlichen Membran, wobei sich diese um die Proteine herum komprimiert.

(Bild: Reprinted with permission from ACS)

Eine solche Zellmembran lässt sich als flüssige 2-D-Lösung beschreiben, in welcher sich die Komponenten seitlich bewegen können. Diese Bewegungen innerhalb der Membran sind von deren Flexibilität und Fluidität abhängig und bestimmen schliesslich die Funktionalität der Membran.

Frei bewegliche Kanalproteine

Chemiker des NCCR «Molecular Systems Engineering» um Prof. Wolfgang Meier und Prof. Cornelia Palivan von der Universität Basel haben nun drei verschiedene Kanalproteine in künstlichen Membranen von 9 bis 13 Nanometer Dicke eingebaut und dort erstmals deren Bewegungen gemessen.

Dafür stellten sie zunächst grosse Membranmodelle mit eingebetteten, gefärbten Kanalproteinen her; diese brachten sie auf eine Glasoberfläche und massen sie dann mittels einer Einzelmolekül-Messmethode, der sogenannten Fluoreszenz-Korrelations-Spektroskopie. Alle drei Kanalproteine konnten sich frei in den unterschiedlich dicken Membranen bewegen, wobei sie dies maximal zehnmal langsamer taten als in den Lipiddoppelschichten der natürlichen Umgebung.

Flexibilität nötig

In dickeren Membranen müssen sich die Bausteine der Membran (Polymere) um die Kanalproteine herum komprimieren können, um sich deren fixen Grösse anzupassen. Dafür müssen die Bausteine der Membran genug flexibel sein.

Dies wurde bereits theoretisch beschrieben und konnte nun von den Forschenden der Universität Basel erstmals experimentell gemessen werden: Je dicker die Membran, desto langsamer war die Bewegung des Kanalproteins im Vergleich zur Bewegung der Polymere selber, welche die Membran formen.

«Das Phänomen lässt sich durch eine lokale Fluiditätsverringerung beschreiben, die durch die Komprimierung der Polymere hervorgerufen wird», erläutert Erstautor Fabian Itel. Grundsätzlich ist aber das Verhalten der Kanalproteine in künstlichen Membranen vergleichbar zu jenem in ihrer natürlichen Umgebung, der Lipiddoppelschicht, wobei die Zeitskala der Bewegungen um etwa das Zehnfache tiefer liegt. Das Forschungsprojekt wurde vom Schweizerischen Nationalfonds und dem NCCR Molecular Systems Engineering finanziell unterstützt.

Originalbeitrag
Fabian Itel, Adrian Najer, Cornelia G. Palivan, and Wolfgang Meier
Dynamics of membrane proteins within synthetic polymer membranes with large hydrophobic mismatch
Nano Letters (2015), doi: 10.1021/acs.nanolett.5b00699

Weitere Auskünfte
Prof. Wolfgang Meier, Universität Basel, Departement Chemie, Tel. +41 61 267 38 02, E-Mail: wolfgang.meier@unibas.ch

Weitere Informationen:

https://www.unibas.ch/de/Aktuell/News/Uni-Research/Wie-sich-natuerliche-Kanalpro...

Olivia Poisson | Universität Basel

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pflanzlicher Wirkstoff lässt Wimpern wachsen
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Wolkenbildung: Wie Feldspat als Gefrierkeim wirkt
09.12.2016 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie