Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie sich mitochondriale Membranen falten

01.06.2017

Das Team um Oliver Daumke erforscht, wie die innere Membran der Mitochondrien jene komplexen Formen annimmt, die sie für die Ausführung zellulärer Funktionen benötigt.


Elektronenmikroskopische Aufnahme einer Hefezelle. Querschnitte von Mitochondrien erscheinen als ovale Strukturen. Das kleine Bild zeigt die Vergrößerung eines Mitochondriums, die Cristae erscheinen als Einstülpungen. Crista junctions sind mit einem Sternchen markiert. Bild: AG Daumke, MDC


Im Reagenzglas verformte der Mic60-Mic19-Komplex kugelförmige Fettbläschen zu schlauchförmigen Strukturen. Der Komplex hat eine membranformende Funktion, die zur Bildung der Cristae beiträgt.

Bild: AG Daumke, MDC

Vor etwa zwei Millionen Jahren schmuggelten sich Bakterien in die Vorfahren unserer Zellen und schlugen dort ein dauerhaftes Lager auf. Diese symbiotische Beziehung erwies sich als so vorteilhaft für beide Seiten, dass sie in allen Nachkommen erhalten blieb. Die Parasiten leben bis heute als Organellen, den Mitochondrien, in den Zellen. Sie besitzen ihr eigenes Genom und überleben nicht außerhalb des Wirts, der sie mit allem Nötigen versorgt. Ist ihre Struktur defekt, kommt es mitunter zu Krebs, neurologischen Erkrankungen und weiteren Krankheiten.

Die Forschungsgruppe von Prof. Oliver Daumke am Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft (MDC) löste nun zusammen mit Partnern aus Freiburg, Homburg und der Universität Halle-Wittenberg ein wichtiges Rätsel zur Struktur der Mitochondrien. In einem Artikel in der aktuellen Ausgabe des Fachjournals Nature Communications beschreiben sie, welche Rolle ein Protein beim Bau komplizierter Falten in der Mitochondrien-Membran spielt. So bildet sich ein Labyrinth aus präzise definierten Verflechtungen, die für die Funktion der Organelle unabdingbar sind.

Die Membranen der Mitochondrien besitzen zwei Schichten. Die äußere weist zur Zellumgebung und ist glatt wie die Oberfläche einer Muschel. Die innere Membran dagegen ist mehrfach gefaltet und runzelig. Die zwei Membranen verhalten sich wie ein in einen Fäustling genähter Fingerhandschuh. Die Hand repräsentiert dabei wie das Innere des Organells, die Zwischenräume zwischen den Fingern „Cristae“ genannte Einstülpungen.

Ein fingerartiges Gerüst

Diese langen, nach innen weisenden Falten tragen Proteine, die am Stoffwechsel und der Energieproduktion der Mitochondrien beteiligt sind. Die Cristae sind wahrscheinlich auch wichtig, wenn sich Mitochondrien teilen oder miteinander verschmelzen. Wenn ihre faltige Struktur gestört wird, besteht die Gefahr, dass die Organellen zusammenbrechen und giftige Substanzen an die Zelle abgeben.

Mit den Zwischenräumen zwischen den Fingern als Cristae sind die Fingerspitzen die crista junctions (CJ). Dort trifft die innere auf die äußere Membran, wo sich eine molekulare Maschine mit dem Namen MICOS befindet. Sie besteht aus mindestens sieben Proteinen und ist für die Formgebung der Membranen wichtig.

„Wir hatten Hinweise darauf, dass die zwei MICOS-Proteine Mic10 und Mic60 besonders wichtig für die Faltung und die Bildung der Cristae sind“, sagt Erstautor Manuel Hessenberger. „Ohne diese Proteine kommt es zu tiefgreifenden Änderungen in der Architektur der Membran und der Organelle.“ Auch wenn in der Zelle zu viel Mic10 oder Mic60 vorliegen, komme es zu Deformationen.

Daumkes Team ist auf Strukturbiologie spezialisiert, das heißt, es will die Verbindung zwischen der räumlichen Struktur eines Moleküls und seinem Verhalten in der Zelle aufklären. Mic10 lagert sich bevorzugt zu bogenförmigen Gerüststrukturen an der Membran zusammen und hilft so, die scharfen Falze an den Rändern der Cristae zu bilden. Die Funktion von Mic60 ist dagegen unklar.

Scharfe und stabile Falze

Im Experiment vermischte Manuel Hessenberger das Mic60-Protein mit gereinigten Lipiden, dem Hauptbestandteil von Membranen. Die Lipide organisierten sich zu langen schlauchartigen Formen und ähnelten damit Cristae. „Seine zentrale Rolle bei der Bildung von Cristae und der crista junctions übt Mic60 aus, indem es direkt an die Membran bindet und sie verformt“, sagt Hessenberger.

Auch die Region auf Mic60, die an die Membranen bindet, konnten die Forscherinnen und Forscher aufklären. Ist Mic60 nicht im MICOS-Komplex integriert, verbirgt es seine membranbindende Region. Das ändert sich, sobald eine weitere Komponente des MICOS-Komplexes an Mic60 bindet: ein Protein namens Mic19. Oliver Daumke erklärt: „Diese Kombination aus zwei Proteinen verankert Proteinkomplexe an den Kontaktstellen zwischen Cristae und äußerer Membran. Sobald sie dort ankommen, können sie die innere Membran verformen. Dabei bilden sie scharfe Falze und halten die gesamte Struktur zusammen.“

Mic60 positioniert sich so in der Membran, dass es die Krümmung stabilisiert. Daumke vergleicht das Protein mit einem Gummiband, das um benachbarte Fingerspitzen geschlungen wird und so deren Abstand zueinander bestimmt. Sobald dieser Mechanismus zusammenbricht, verliert die Struktur jedoch ihre Form und die Falten der Mitochondrienmembran fallen in sich zusammen.

Mitochondrien sind notorisch schwer zu untersuchen, denn ihre Gene lassen sich kaum modifizieren. Daumkes Team schaffte es, indem die Forscherinnen und Forscher den MICOS-Komplex im Reagenzglas nachbauten und die Interaktionen der Proteine mit der Membran analysierten. Die neue Studie erklärt zum ersten Mal die Aufgaben von Mic60 und Mic19 und wie ihre Struktur mit ihrer Funktion zusammenhängt.

Manuel Hessenberger et al (2017): „Regulated membrane remodeling by Mic60 controls formation of mitochondrial crista junctions.“ Nature Communications. doi:10.1038/ncomms15258 (Open Access)

Weitere Informationen:

https://www.mdc-berlin.de/1155142/de/research/research_teams/nukeotid_bin_protei... Homepage der Arbeitsgruppe von Oliver Daumke
https://insights.mdc-berlin.de/de/2017/05/wie-sich-mitochondriale-membranen-falt... Pressemitteilung auf den Seiten des MDC

Annette Tuffs | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Nesseltiere steuern Bakterien fern
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Die Immunabwehr gegen Pilzinfektionen ausrichten
21.09.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

23. Baltic Sea Forum am 11. und 12. Oktober nimmt Wirtschaftspartner Finnland in den Fokus

21.09.2017 | Veranstaltungen

6. Stralsunder IT-Sicherheitskonferenz im Zeichen von Smart Home

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

OLED auf hauchdünnem Edelstahl

21.09.2017 | Messenachrichten

Weniger (Flug-)Lärm dank Mathematik

21.09.2017 | Physik Astronomie

In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät

21.09.2017 | Geowissenschaften