Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie sich die Zellumgebung bei bestimmten Augenkrankheiten verändert

15.03.2017

Wenn die Netzhaut nicht ausreichend mit Blut versorgt ist, verändert sich das Proteingerüst in der Umgebung der retinalen Zellen, die sogenannte extrazelluläre Matrix. Verschiedene Augenerkrankungen, etwa der Grüne Star, gehen mit solchen Durchblutungsstörungen einher. Wie genau sich die extrazelluläre Matrix dabei umstrukturiert, beschreiben Forscher der Ruhr-Universität Bochum in der Fachzeitschrift „Scientific Reports“.

Das Team um Dr. Jacqueline Reinhard und Prof. Dr. Andreas Faissner vom Lehrstuhl für Zellmorphologie und Molekulare Neurobiologie kooperierte für die Studie mit Kolleginnen und Kollegen um Privatdozentin Dr. Stephanie Joachim vom Forschungslabor der Universitäts-Augenklinik Bochum.


Jacqueline Reinhard erforscht den Proteindschungel, der unsere Nervenzellen umgibt.

© RUB, Marquard

Entscheidend für Überleben und Absterben von Zellen

Nicht nur beim Grünen Star (Glaukom), auch bei anderen Augenerkrankungen wird die Retina mangelhaft durchblutet, etwa bei okulären Gefäßverschlüssen oder der diabetischen Retinopathie. Aufgrund des verminderten Blutflusses erhalten die Nervenzellen der Netzhaut nicht ausreichend Sauerstoff und sterben ab. Patienten können dadurch unumkehrbar erblinden.

Die extrazelluläre Matrix beeinflusst die Zellen, die in sie eingebettet sind. Je nachdem wie die Matrix zusammengesetzt ist, sorgt sie für das Überleben der Zellen oder für deren Absterben. Sie besteht aus einem Proteinmix, den die Zellen selbst bilden und abscheiden.

Verschiedene Proteine betroffen

Im Tiermodell untersuchten die Bochumer Forscher, wie die extrazelluläre Matrix in Netzhaut und Sehnerv zusammengesetzt ist. Sie verglichen schlecht durchblutetes Gewebe mit normal durchblutetem. Im schlecht durchbluteten Sehnerv fanden sich vermehrt Proteine der sogenannten Lectican-Familie. In der minderdurchbluteten Netzhaut kam verstärkt das Protein Fibronectin vor.

Außerdem analysierten die Forscher die Tenascin-Proteine, welche in unterschiedlichen Varianten vorliegen können. Das Ergebnis: Im schlecht durchbluteten Gewebe traten andere Formen auf als im Normalzustand. Insgesamt war der Aufbau der extrazellulären Matrix durch den verminderten Blutfluss stark verändert.

Rolle einzelner Komponenten erforschen

„Zukünftig wollen wir die Rolle einzelner Komponenten der extrazellulären Matrix im Krankheitsverlauf bei bestimmten Durchblutungsstörungen entschlüsseln“, sagt Jacqueline Reinhard. Würde man die Veränderungen der extrazellulären Matrix besser verstehen, könnte man auch neurodegenerative Prozesse früher erkennen, vermuten die Autoren der Studie. Eines Tages könnte das auch ein Ansatzpunkt für Therapien sein.

Originalveröffentlichung

Jacqueline Reinhard, Marina Renner, Susanne Wiemann, Daniel A. Shakoor, Gesa Stute, H. Burkhard Dick, Andreas Faissner, Stephanie C. Joachim: Ischemic injury leads to extracellular matrix alterations in retina and optic nerve, in: Scientific Reports, 2017, DOI: 10.1038/srep43470

Pressekontakt

Dr. Jacqueline Reinhard
Lehrstuhl für Zellmorphologie und Molekulare Neurobiologie
Fakultät für Biologie und Biotechnologie
Ruhr-Universität Bochum
Tel.: 0234 32 24314
E-Mail: jacqueline.reinhard@rub.de

Privatdozentin Dr. Stephanie Joachim
Forschungslabor der Universitäts-Augenklinik
Ruhr-Universität Bochum
Tel.: 0234 299 3156
E-Mail: stephanie.joachim@rub.de

Dr. Julia Weiler | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.ruhr-uni-bochum.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics