Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie sich Bakterien ihre Schutzanzüge maßschneidern

16.12.2014

Eine Art Schutzanzug bewahrt viele Bakterien vor chemischer und mechanischer Verletzung und hilft Ihnen, sich vor dem menschlichen Immunsystem zu verstecken. Die Einzeller produzieren diese Umhüllung in Form von Ketten aus einzelnen Bausteinen.

Ein internationales Forscherteam unter Beteiligung eines Biophysiker der Universität Bonn hat nun entschlüsselt, wie es die Bakterien schaffen, die Ketten in einer bestimmten Länge herzustellen: Sie bedienen sich eines molekularen Lineals. Die Ergebnisse sind nun im Fachjournal “Nature Structural and Molecular Biology” veröffentlicht. 


Bakterien benutzen ein molekulares Lineal, um Lipopolysaccharidmoleküle der richtigen Länge herzustellen.

(c) Quelle: Gregor Hagelüken/Uni Bonn


Dr. Gregor Hagelüken vom Institut für Physikalische und Theoretische Chemie der Universität Bonn inspiziert eine Nährplatte mit Bakterien.

(c) Foto: Barbara Frommann/Uni Bonn

Viele Bakterien schneidern sich eine Art „Schutzanzug“, um widrigen Umweltbedingungen wie Chemikalien oder mechanischer Beanspruchung zu trotzen. Die dafür erforderlichen Lipopolysaccharide stellen sie selbst her, indem sie Bausteine aus fettähnlichen („Lipo-„) und Zucker-Bestandteilen („Polysaccharide“) zu Ketten zusammenfügen. „Anhand der Zusammensetzung und der typischen Länge der Lipopolysaccharide lassen sich Bakterienarten unterscheiden“, sagt Dr. Gregor Hagelüken vom Institut für Physikalische und Theoretische Chemie der Universität Bonn.

Diese Schutzhülle spielt auch bei Infektionen eine wichtige Rolle, da sie die erste Kontaktstelle zwischen Bakterium und Wirt ist. Sie dient dabei auch als Schutz vor Zerstörung durch das Immunsystem des Wirts. Aus der Umhüllung können darüber hinaus giftige Substanzen - so genannte Endotoxine - freigesetzt werden, wenn die Bakterienzelle abstirbt.

Durch Wiederholung der Zucker-Bausteine ließe sich die Kette im Prinzip beliebig lang gestalten. „Theoretisch könnten Bakterien ein unendlich langes Lipopolysaccharid synthetisieren. Sie würden dann aber wahrscheinlich verhungern, weil sämtliche Ressourcen für die Schutzhülle aufgebraucht würden“, erläutert Dr. Hagelüken. Die Wissenschaft rätselte deshalb bislang, wie es die Einzeller schaffen, Ketten in einer ganz bestimmten Länge herzustellen. Nun ist das Rätsel gelöst: Die Bakterien nutzen eine Art molekulares Lineal, hat Dr. Hagelüken nun zusammen mit einem Forscherteam der Universität St. Andrews (Schottland), der Universität Guelph (Ontario, Kanada) und des Europäischen Laboratoriums für Molekularbiologie in Hamburg herausgefunden.

Das Lineal besteht aus drei ineinander verwundenen Proteinsträngen

Wie schon länger bekannt ist, sorgt ein „WbdA“ genanntes Protein als Starter dafür, dass die einzelnen Bausteine zur Kette zusammengefügt werden. Sein Gegenspieler „WbdD“ beendet als Stopper den Prozess des Verknüpfens. „Das Lineal ist aus drei ineinander verwundenen Proteinsträngen aufgebaut und dient als Abstandshalter zwischen Starter und Stopper. Erst wenn die Lipopolysaccharidkette lang genug ist und das Ende des Lineals erreicht, kann WbdD die Kettenbildung beenden“, sagt Dr. Hagelüken. Das produzierte Lipopolysaccharid ist dann genauso lang wie das Lineal.

Der Biophysiker hat zunächst an der Universität St. Andrews im Labor von Prof. James Naismith begonnen, mit kristallographischen Methoden die räumlichen Strukturen der beteiligten Moleküle zu untersuchen. Nach seinem Wechsel an die Universität Bonn führten sie die Forschungsarbeiten weiter. Zusammen mit den ausgetüftelten Methoden der anderen Forschungsgruppen, wie zum Beispiel Synchrotron-Kleinwinkelstreuung und -Circulardichroismus, konnte schließlich der Aufbau der verschiedenen Moleküle und ihr Zusammenspiel entschlüsselt werden. „Erst anhand der Strukturbilder kamen wir auf die Idee, dass die Bakterien ein molekulares Lineal verwenden“, sagt Dr. Hagelüken.

Forscher variierten die Länge des Lineals

Die kanadischen Forscher überprüften die Hypothese, indem sie die Länge des Lineals in lebenden Zellen des Modellbakteriums „Escherichia coli O9a“ veränderten. Die Ergebnisse beweisen die Vermutung: War das molekulare Lineal der Einzeller kürzer justiert, dann waren auch die Lipopolysaccharidketten kürzer. Gaben die Forscher einen längeren Abstandshalter vor, produzierte auch das Bakterium seinen Schutzanzug aus längeren Ketten. „Das ist ein schönes Beispiel dafür, wie die Kombination aus Methoden verschiedener Forschergruppen schließlich zum Ziel führt“, sagt der Biochemiker der Universität Bonn.

Das Ergebnis aus der Grundlagenforschung hat durchaus praktische Bedeutung: Solche Kettenbildungen sind in der Natur häufig und werden auch in der chemischen Industrie angewendet. „Deshalb ist denkbar, dass solche molekularen Lineale auch für chemische Synthesen in der Industrie interessant sein könnten“, erläutert Dr. Hagelüken. Die Schutzanzüge sind lebenswichtig für die Bakterien. Deshalb stellen die Lineale ein interessantes Ziel für die Entwicklung neuer Medikamente dar, mit denen man die Schutzanzüge vielleicht löchrig machen könnte.

Publikation: A coiled-coil domain acts as a molecular ruler to regulate O-antigen chain length in lipopolysaccharide, Fachjournal “Nature Structural and Molecular Biology”, DOI: 10.1038/nsmb.2935

Kontakt für die Medien:

Dr. Gregor Hagelüken
Institut für Physikalische
und Theoretische Chemie
der Universität Bonn
Tel. 0228/733830
E-Mail: hagelueken@pc.uni-bonn.de

Johannes Seiler | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Medikamente aus der CLOUD: Neuer Standard für die Suche nach Wirkstoffkombinationen
23.05.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

nachricht Mikro-Lieferservice für Dünger
23.05.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium 2017: Internet of Production für agile Unternehmen

23.05.2017 | Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Medikamente aus der CLOUD: Neuer Standard für die Suche nach Wirkstoffkombinationen

23.05.2017 | Biowissenschaften Chemie

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungsnachrichten

CAST-Projekt setzt Dunkler Materie neue Grenzen

23.05.2017 | Physik Astronomie