Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Rezeptoren für Medikamente im Zellinneren arbeiten

05.09.2017

G-Protein-gekoppelte Rezeptoren sind für viele Medikamente der zentrale Angriffspunkt. Würzburger Wissenschaftler konnten jetzt genauer zeigen, wie diese Rezeptoren im Zellinneren wirken.

G-Protein-gekoppelten Rezeptoren (GPCRs) werden zu Hunderten im menschlichen Erbgut kodiert. Sie bilden die größte Gruppe von Rezeptoren, über die Hormone und Neurotransmitter auf Zellen einwirken. Dementsprechend groß ist ihre Bedeutung als Angriffsstelle für therapeutisch wirksame Substanzen: Rund die Hälfte aller verschreibungspflichtigen Medikamente wirken auf diese Rezeptoren ein – und helfen so bei der Behandlung weitverbreiteter Krankheiten, wie etwa Bluthochdruck, Asthma oder Morbus Parkinson.


Nach der Bindung eines Hormons (TSH) wird der Rezeptor von der Zelle aufgenommen und zum TGN transportiert, wo er die lokale cAMP-Produktion steigert und die Proteinkinase A (PKA) aktiviert.

Abbildung: AG Calebiro

Publikation in Nature Communications

Lange Zeit war die Wissenschaft davon überzeugt, dass GPCRs auf der Zelloberfläche sitzen und nur von dort aus über verschiedene Signalketten Einfluss auf die Aktivität der Zelle nehmen. Diese Vorstellung ist in jüngster Zeit durch eine Reihe von Studien ins Wanken geraten. Diese Studien deuten darauf hin, dass GPCRs auch im Zellinneren aktiv sind.

Eine Bestätigung für diese Theorie haben jetzt Forscher um Professor Davide Calebiro vom Institut für Pharmakologie und Toxikologie und vom Bio-Imaging Center der Universität Würzburg geliefert. Die Ergebnisse ihrer Arbeit stellen sie in der aktuellen Ausgabe der Fachzeitschrift Nature Communications vor.

Vereinfacht dargestellt, sitzen G-Protein-gekoppelten Rezeptoren in der Zellwand und warten darauf, dass ein Hormon oder Neurotransmitter an sie bindet und sie dadurch aktiviert. Das Signal wird in die Zelle weitergeleitet, vor allem durch die Produktion eines intrazellulären Botenstoffes wie des zyklischen Adenosinmonophosphats (kurz cAMP). Dieser Botenstoff wiederum ist im Zellinneren an der Regulation einer Vielzahl von Zellfunktionen beteiligt, wie beispielsweise der Gentranskription und der Zellteilung.

Rezeptoren sind auch im Zellinneren aktiv

„Der erste Hinweis, dass GPCRs auch im Zellinneren die Produktion von cAMP anstoßen, stammte aus zwei Studien an typischen Protein-Hormon-Rezeptoren“, sagt Davide Calebiro. Für eine dieser Studien waren er und sein Team verantwortlich; sie hatten einen Rezeptor untersucht, der für die Produktion von Schilddrüsenhormonen wichtig ist – den sogenannten Thyreoidea-stimulierenden-Hormon(TSH)-Rezeptor.

„Die Studien zeigten unabhängig voneinander, dass GPCRs dazu in der Lage sind, im Zellinneren eine zweite Phase der cAMP-Produktion dauerhaft in Gang zu setzen“, so Calebiro. Tatsächlich sei ihre Wirkung dort „biologisch relevant“. Der genaue Mechanismus sei allerdings weitestgehend unklar gewesen.

Mit ihrer neuesten Studie ist es den Forschern der Universität Würzburg gemeinsam mit Kollegen der University of Birmingham gelungen, Details der Vorgänge im Zellinneren zu entschlüsseln. Als wichtigsten Hauptakteur identifizierten sie dabei das trans-Golgi-Netzwerk (TGN) – ein mit dem Golgi-Apparat verbundenes Netzwerk von Kanälen und Zisternen.

In diesem Netzwerk verteilt die Zelle modifizierte Proteine auf unterschiedliche Transportvesikel, mit denen diese anschließend an ihren Bestimmungsorten gebracht werden. „Unsere neue Daten zeigen, dass das TGN eine zentrale Schaltstelle für die Aktivität von G-Protein-gekoppelten Rezeptoren ist“, sagt Davide Calebiro. Sie zeigen dort einen neuen Mechanismus auf, der die zellulären Effekte der GPCR-Signale im Zellinneren erklären kann, so der Wissenschaftler.

Die Abläufe im Zellinneren

An Zellen der Schilddrüse läuft dieser Mechanismus demnach so ab: Nach Bindung von TSH werden TSH-Rezeptoren ins Zellinnere aufgenommen und zum trans-Golgi-Netzwerk transportiert. Dort aktivieren die Rezeptoren die Produktion von cAMP und ein weiteres Enzym – die Proteinkinase A. Dies geschieht alles in direkter Nachbarschaft zum Zellkern, in dem die genetische Information der Zelle liegt, und nimmt somit Einfluss auf den Ableseprozess der DNA (Gentranskription).

„Diese Studie bedeutet einen signifikanten Fortschritt“, ist sich Davide Calebiro sicher, da sie ein neues Modell präsentiert, das zeigt, wie die G-Protein-gekoppelte Signalkette im Zellinneren abläuft. Diese neuen Ergebnisse könnten „zur Entwicklung neuer Medikamente für eine Vielzahl von menschlichen Krankheiten führen, die spezifisch auf die Aufnahme von Rezeptoren oder auf Ihre Funktion im TGN wirken“.

Die Studie wurde unterstützt von der Deutschen Forschungsgemeinschaft DFG (Grant CA 1014/1-1 und SFB/Transregio 166–Projekt C1, Davide Calebiro).

Internalized TSH receptors en route to the TGN induce local Gs-protein signaling and gene transcription. Amod Godbole, Sandra Lyga, Martin J. Lohse & Davide Calebiro. Nature Communications, DOI: 10.1038/s41467-017-00357-2

Kontakt

Prof. Dr.med. Dr. Davide Calebiro, T: +49 931 31-80067, davide.calebiro@toxi.uni-wuerzburg.de

Gunnar Bartsch | Julius-Maximilians-Universität Würzburg

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Markierte Zellen als Fenster in den Körper
05.09.2017 | Eberhard Karls Universität Tübingen

nachricht Effizientere Rohstoffnutzung mit Hilfe von „molekularen Fließbändern“
05.09.2017 | Goethe-Universität Frankfurt am Main

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie Rezeptoren für Medikamente im Zellinneren arbeiten

G-Protein-gekoppelte Rezeptoren sind für viele Medikamente der zentrale Angriffspunkt. Würzburger Wissenschaftler konnten jetzt genauer zeigen, wie diese Rezeptoren im Zellinneren wirken.

G-Protein-gekoppelten Rezeptoren (GPCRs) werden zu Hunderten im menschlichen Erbgut kodiert. Sie bilden die größte Gruppe von Rezeptoren, über die Hormone und...

Im Focus: How receptors for medicines work inside cells

G protein-coupled receptors are the key target of a large number of drugs. Würzburg scientists have now been able to show more precisely how these receptors act in the cell interior.

The human genome encodes hundreds of G protein-coupled receptors (GPCRs). These form the largest group of receptors through which hormones and...

Im Focus: Drehtür am Zellkern: Wie Shuttle-Proteine die Kernpore steuern

Kernporen sind winzige Kanäle, durch die Stoffe zwischen Zellkern und Zytoplasma transportiert werden. Das gängige Modell zur Regulierung dieses nuklearen Transports könnte nun durch eine neue Studie von Forschern der Universität Basel widerlegt worden sein. Die im «Journal of Cell Biology» veröffentlichte Studie zeigt, dass Shuttle-Proteine, sogenannte Importine, die Funktion der nuklearen Poren steuern. Bislang ging man vom Gegenteil aus und nahm an, dass die nuklearen Poren den Importin-Shuttle steuern würden.

Im Kern jeder Zelle befindet sich die Erbinformation. Geschützt werden diese von einer Membran, die den Kern umschliesst und die etliche Kernporen enthält....

Im Focus: Like a Revolving Door: How Shuttling Proteins Operate Nuclear Pores

Nuclear pore complexes are tiny channels where the exchange of substances between the cell nucleus and the cytoplasm takes place. Scientists at the University of Basel report on startling new research that might overturn established models of nuclear transport regulation. Their study published in the Journal of Cell Biology reveals how shuttling proteins known as importins control the function of nuclear pores – as opposed to the view that nuclear pores control the shuttling of importins.

Genetic information is protected in the cell nucleus by a membrane that contains numerous nuclear pores. These pores facilitate the traffic of proteins known...

Im Focus: Bit data goes anti-skyrmions

Today’s world, rapidly changing because of “big data”, is encapsulated in trillions of tiny magnetic objects – magnetic bits – each of which stores one bit of data in magnetic disk drives. A group of scientists from the Max Planck Institutes in Halle and Dresden have discovered a new kind of magnetic nano-object in a novel material that could serve as a magnetic bit with cloaking properties to make a magnetic disk drive with no moving parts – a Racetrack Memory – a reality in the near future.

Most digital data is stored in the cloud as magnetic bits within massive numbers of magnetic disk drives. Over the past several decades these magnetic bits...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

ICNFT 2018 - 5th International Conference on New Forming Technology

05.09.2017 | Veranstaltungen

21. Business Forum Qualität: Data Analytics für das digitale Qualitätsmanagement

05.09.2017 | Veranstaltungen

VDE veranstaltet Tagung zur Zukunft der Netze

05.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Virtueller Fahrlehrer und realitätsnaher Fahrsimulator

05.09.2017 | Energie und Elektrotechnik

Wie Rezeptoren für Medikamente im Zellinneren arbeiten

05.09.2017 | Biowissenschaften Chemie

VDE-Institut zertifiziert erste multifunktionale Ladestation

05.09.2017 | Energie und Elektrotechnik