Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Proteine Zellmembranen verformen

27.02.2017

Zellen schnüren regelmäßig kleine Bläschen von ihrer Außenhaut ab und nehmen sie in ihr Inneres auf. Daran sind die EHD-Proteine beteiligt, die Professor Oliver Daumke vom MDC erforscht. Er und sein Team haben nun aufgeklärt, wie sich diese Proteine auf der Oberfläche von Zellen zusammenlagern und dadurch deren Außenhaut verformen.

Auf dem Jahrmarkt zaubern Künstler mit ein paar Handgriffen aus einfachen Ballons kunstvolle Figuren. Dafür verformen sie die Ballonhaut und schnüren Teile davon ab. Auf ähnliche Art erzeugen Zellen in ihrer Außenhaut (Zellmembran) kleine Bläschen (Vesikel), die sie in ihr Inneres transportieren. Vesikel dienen zur Aufnahme von Nährstoffen und sind wichtig für die Weiterleitung von Nervensignalen.


EHD-Proteine binden an Membranenoberflächen. In der Zelle liegen EHDs in einem gehemmten Zustand vor, Binden sie an die Membran, wechseln sie in einen aktiven Zustand.

Bild: Artur Alves de Melo, MDC

EHD-Proteine sind an der Bildung solcher Vesikel beteiligt. Sie binden von innen an die Zellmembran und bilden dort lange Ketten und Ringe. Diese Ringe stülpen die Membran ein, ziehen sie zusammen und trennen sie letztlich von der Außenhaut der Zelle ab.

Oliver Daumke vom Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft (MDC) erforscht die räumliche Struktur und die Funktionsweise der EHD-Proteine.

In einer früheren Studie analysierten er und sein Team bereits die 3D-Struktur einer inaktiven EHD-Form, die nicht an die Membran gebunden ist. Wie EHD-Proteine aktiviert werden, um an Membranen zu binden und diese zu röhrenförmigen Gebilden zu verformen, war bisher nicht bekannt.

Die aktive Form der molekularen EHD-Maschine, wie sie im Kontakt mit der Membran vorkommt, beschreiben Daumke und sein Doktorand Arthur Alves de Melo zusammen mit internationalen Kollegen in der aktuellen Ausgabe der Fachzeitschrift PNAS. Der Vergleich der aktiven mit der inaktiven Proteinstruktur ergab, dass die EHD-Moleküle beim Binden an die Membran aufklappen. Dabei legen sie Regionen frei, die die es ihnen erlauben, sich zu ausgedehnten Ketten und Ringen zusammenzulagern. Ein weiterer spezialisierter Bereich dreht sich dabei so, dass er direkt mit der Membran Kontakt aufnehmen kann und die Proteine dort verankert.

Damit hat Daumkes Team zwei Schritte in der Arbeitsweise von EHD beschrieben. „Um den kompletten Arbeitszyklus und damit die Funktionsweise der molekularen EHD-Maschinen zu verstehen, müssen wir noch verschiedene andere Zustände analysieren“, sagt er. „Das ist eine Aufgabe für die nächsten Jahre.“

Arthur Alves Melo et al. (2017): „Structural insights into the activation mechanism of dynamin-like Eps15-homology domain proteins.“ PNAS.

Weitere Informationen:

https://insights.mdc-berlin.de/de/2017/02/wie-proteine-zellmembranen-verformen/ - Meldung auf den Seiten des MDC

Vera Glaßer | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neue Materialchemie für Hochleistungsbatterien
19.09.2017 | Technische Universität Berlin

nachricht Zentraler Schalter der Immunabwehr gefunden
19.09.2017 | Medizinische Hochschule Hannover

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantensensoren entschlüsseln magnetische Ordnung in neuartigem Halbleitermaterial

Physiker konnte erstmals eine spiralförmige magnetische Ordnung in einem multiferroischen Material abbilden. Diese gelten als vielversprechende Kandidaten für zukünftige Datenspeicher. Der Nachweis gelang den Forschern mit selbst entwickelten Quantensensoren, die elektromagnetische Felder im Nanometerbereich analysieren können und an der Universität Basel entwickelt wurden. Die Ergebnisse von Wissenschaftlern des Departements Physik und des Swiss Nanoscience Institute der Universität Basel sowie der Universität Montpellier und Forschern der Universität Paris-Saclay wurden in der Zeitschrift «Nature» veröffentlicht.

Multiferroika sind Materialien, die gleichzeitig auf elektrische wie auch auf magnetische Felder reagieren. Die beiden Eigenschaften kommen für gewöhnlich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungen

Biowissenschaftler tauschen neue Erkenntnisse über molekulare Gen-Schalter aus

19.09.2017 | Veranstaltungen

Zwei Grad wärmer – und dann?

19.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungsnachrichten

Zentraler Schalter der Immunabwehr gefunden

19.09.2017 | Biowissenschaften Chemie

Neue Materialchemie für Hochleistungsbatterien

19.09.2017 | Biowissenschaften Chemie