Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Pflanzen sich gegen Bakterien abschotten

26.05.2015

Wenn Pflanzen schädliche Bakterien bemerken, reagieren sie darauf sehr schnell: Sie verschließen an ihren Blättern die Poren, die den Erregern als Schlupflöcher dienen. Eine Würzburger Forschungsgruppe hat diesen Vorgang analysiert.

Pflanzen werden ständig von Viren, Pilzen und Bakterien bedrängt. Darum haben sie im Lauf der Evolution Immunantworten entwickelt, mit denen sie sich gegen viele krankheitserregende Mikroorganismen wehren. Ein internationales Forschungsteam hat jetzt eine Immunantwort analysiert, die Bakterien das Eindringen in die Blätter erschwert.


Bakterien nutzen Poren als Schlupflöcher, um ins Blattinnere zu gelangen (A). Die Pflanze reagiert, indem sie die Ionenkanäle SLAC1 und SLAH3 aktiviert (r). Die Poren schließen sich.

Grafik: Rob Roelfsema

In den Blättern befinden sich sehr viele kleine Poren, die sich weit öffnen oder komplett verschließen lassen. Über diese Löcher in ihrer Haut regulieren die Pflanzen den lebensnotwendigen Austausch von Luft und Wasser mit der Umgebung. Die Poren bergen aber auch ein Risiko: Für krankheitserregende Bakterien sind sie willkommene Schlupflöcher, um in die Pflanzen einzudringen.

Was bei einer bakteriellen Infektion an den Blattporen, den Stomata, passiert, war bislang so gut wie unbekannt. Ein internationales Forschungsteam hat dazu jetzt neue Erkenntnisse in der Zeitschrift „New Phytologist“ veröffentlicht. Den Kern des Teams bilden die Pflanzenwissenschaftler Rainer Hedrich und Rob Roelfsema von der Universität Würzburg. In ihren Arbeitsgruppen sind die molekularen Mechanismen zur Kontrolle der Stomata seit vielen Jahren ein Schwerpunkt.

Bakterienprotein Flagellin in Blätter injiziert

Wie reagieren die Stomata auf einen Befall mit Bakterien? Das wollte Aysin Guzel Deger von der Universität Mersin (Türkei) herausfinden, die derzeit als Gastdoktorandin in Würzburg ist. Dazu injizierte sie das Bakterienprotein Flagellin in die Blätter der Modellpflanze Ackerschmalwand (Arabidopsis thaliana). Dieses Protein kommt bei sehr vielen Bakterien vor. Die Pflanzen stufen es offensichtlich als Gefahr ein und reagieren dann sehr schnell: Sie beginnen etwa 15 Minuten nach der Injektion, ihre Stomata zu verschließen. So versperren sie den Eintrittsweg für die Bakterien.

Das Flagellin entfaltet seine Wirkung an den Schließzellen, die die Stomata der Pflanze begrenzen: Je zwei davon säumen jede Blattpore und sorgen dafür, dass sich die Porengröße verändern lässt. In Kooperation mit einem Team aus Estland fanden die Würzburger heraus, wo genau an den Schließzellen das Flagellin wirkt: „Es aktiviert dort über das Enzym OST1 die Ionenkanäle SLAC1 und SLAH3. Als Folge davon erschlaffen die Schließzellen und die Poren gehen zu“, erklärt Roelfsema.

Flagellin aktiviert den Trockenstress-Signalweg

Interessanterweise sind das Enzym und die zwei Ionenkanäle auch daran beteiligt, wenn Pflanzen ihre Poren bei Trockenheit dichtmachen. Auf diesem Weg verringern sie den Verlust von Wasser an die Umgebung, wie Hedrichs Team schon vor längerer Zeit herausgefunden hat.

Trockenheit und bakterielle Krankheitserreger aktivieren in Pflanzen also denselben Signalweg: Diese neue Erkenntnis könnte sich in der Pflanzenzüchtung dazu nutzen lassen, um zwei Fliegen mit einer Klappe zu schlagen: „Kulturpflanzen mit verbesserten OST1-Enzymen könnten vielleicht gleichzeitig widerstandsfähiger gegen Trockenheit und gegen Bakterien sein“, sagt Professor Hedrich. Für die Landwirtschaft sei das eine spannende Perspektive, denn Trockenheit und Schädlinge gehören zu den Hauptfaktoren, die weltweit für Ernteeinbußen sorgen.

“Guard cell SLAC1-type anion channels mediate flagellin-induced stomatal closure”, Aysin Guzel Deger, Sönke Scherzer, Maris Nuhkat, Justyna Kedzierska, Hannes Kollist, Mikael Brosché, Serpil Unyayar, Marie Boudsocq, Rainer Hedrich, and M. Rob G. Roelfsema. New Phytologist, online publiziert am 30. April 2015, DOI: 10.1111/nph.13435

Kontakt

Prof. Dr. Rainer Hedrich, Lehrstuhl für Botanik I (Pflanzenphysiologie und Biophysik), Universität Würzburg, T (0931) 31-86100, hedrich@botanik.uni-wuerzburg.de

PD Dr. Rob Roelfsema, Lehrstuhl für Botanik I (Pflanzenphysiologie und Biophysik), Universität Würzburg, T (0931) 31-86121, roelfsema@botanik.uni-wuerzburg.de

Gunnar Bartsch | Julius-Maximilians-Universität Würzburg
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

nachricht Schimpansen belohnen Gefälligkeiten
23.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften