Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Pflanzen mit Pilzen Freundschaft schließen

16.09.2016

Viele Pilze schädigen Pflanzen und töten sie. Aber es gibt auch pflanzenfreundliche Pilze: Die meisten Landpflanzen leben in einer engen Gemeinschaft mit arbuskulären Mykorrhiza-Pilzen (AM-Pilzen), die ihr Wachstum fördern. Wie diese Symbiose zustande kommt, untersuchen Forscher der Gruppe „Molecular Phytopathology“ am Karlsruher Institut für Technologie (KIT). Die Wissenschaftler haben nun ein Gen identifiziert, das von den AM-Pilzen gezielt aktiviert wird und die Entwicklung der Pflanzenwurzel beeinflusst: Der GRAS-Transkriptionsfaktor MIG1 sorgt dafür, dass mehr und größere Wurzelrindenzellen entstehen.

Darüber berichten die Forscher in der Zeitschrift Current Biology (DOI: 10.1016/j.cub.2016.07.059).

Die meisten Landpflanzen leben in einer Symbiose mit AM-Pilzen – in einer engen Beziehung, von der beide Seiten profitieren: Die AM-Pilze helfen den Pflanzen, Nährstoffe wie Stickstoff und Phosphat sowie Wasser aus dem Boden zu ziehen, schützen sie vor Schädlingen und fördern darüber hinaus das Pflanzenwachstum, indem sie die Wurzelentwicklung beeinflussen.


Unter dem Mikroskop: Der AM-Pilz (grün) erreicht die innere Wurzelrinde und bildet dort die namensgebenden Arbuskeln (s. Pfeil; baumartige Struktur, Latein arbor = Ba

(Abbildung: Carolin Heck/KIT)

Als Gegenleistung versorgen die Pflanzen die AM-Pilze mit Kohlehydraten, die sie durch Photosynthese erzeugen. Die Symbiose verbessert Wachstum und Gesundheit der Pflanzen auch unter schwierigen Bedingungen, wie nährstoffarme Böden und Stress. Kontrolliert kultiviert, könnten Gemeinschaften von Kulturpflanzen mit arbuskulären Mykorrhiza-Pilzen helfen, Dünger und Pestizide einzusparen, und somit zu einer nachhaltigen Landwirtschaft beitragen.

Doch wie kommt die freundschaftliche Beziehung zwischen Pflanze und Pilz überhaupt zustande? Dieser Frage gehen Wissenschaftler der Gruppe „Molecular Phytopathology“ unter Leitung von Professorin Natalia Requena am Botanischen Institut des KIT nach.

In grundlegenden Forschungsarbeiten untersuchen sie die molekularen Prozesse bei der Ausbildung der Symbiose. Was die Förderung des Pflanzenwachstums über die Wurzelentwicklung betrifft, haben die Wissenschaftler nun ein Pflanzengen identifiziert, das von den AM-Pilzen gezielt aktiviert wird – den GRAS-Transkriptionsfaktor MIG1, der die Größe der Wurzelrindenzellen bestimmt.

Anhand von Medicago truncatula, einer Pflanzenart aus der Gattung der Schneckenklees, haben die Karlsruher Forscher die Rolle von MIG1 untersucht. Darüber berichten sie in der Zeitschrift Current Biology.

„Die Ausbildung einer Symbiose mit arbuskulären Mykorrhiza-Pilzen verlangt von Pflanzen eine außergewöhnliche und genau gesteuerte Anpassung“, erklärt Professorin Natalia Requena. „Die Pflanze aktiviert ihre genetischen Programme für eine solche Symbiose noch vor dem ersten physischen Kontakt mit dem Pilz, sobald sie einen von diesem abgesonderten Signalstoff empfängt.“

Im Folgenden liegt die Kontrolle der Ausbildung der Symbiose vorwiegend bei der Pflanze. Die Besiedlung von Pflanzenwurzeln durch AM-Pilze ist auf das Abschlussgewebe und die Rinde beschränkt. Dabei dringen die Hyphen (Zellfäden) des Pilzes tief in die Wurzelrinde ein und bilden weitverzweigte Strukturen, sogenannte Arbuskeln. Die Pflanze umhüllt die Arbuskeln mit einer eigens synthetisierten periarbuskulären Membran (PAM).

Bei der Regulierung der Wurzelkolonisation und der Bildung von Arbuskeln übernehmen bestimmte Proteine, die einer pflanzenspezifischen Familie von Proteinen – der GRAS-Protein-Familie – angehören, wesentliche Funktionen. Sie wirken als Transkriptionsfaktoren, welche die Aktivität anderer Gene steuern, das heißt sie an- oder ausschalten.

Beispielsweise ermöglicht das Protein RAM1 die Verzweigung der Arbuskeln, RAD1 ihre Erhaltung, und NSP1, NSP2 und DIP1 kontrollieren den allgemeinen Kolonisationsvorgang. Die Forscherinnen und Forscher um Professorin Natalia Requena identifizierten nun den Transkriptionsfaktor MIG1 (Mycorrhiza Induced GRAS 1). Dessen stärkste Expression ist in Zellen zu beobachten, die Arbuskeln enthalten.

MIG1 verändert die Wurzelrindenentwicklung wesentlich, indem es dafür sorgt, dass mehr und größere Wurzelrindenzellen entstehen, sodass der Durchmesser der Wurzeln insgesamt deutlich zunimmt. Umgekehrt führt eine Herunterregulierung von MIG1 zu missgebildeten Arbuskeln.

Carolin Heck, Hannah Kuhn, Sven Heidt, Stefanie Walter, Nina Rieger and Natalia Requena: Symbiotic fungi control plant root cortex development through the novel GRAS transcription factor MIG1. Current Biology, 2016. DOI: 10.1016/j.cub.2016.07.059

Das Karlsruher Institut für Technologie (KIT) verbindet seine drei Kernaufgaben Forschung, Lehre und Innovation zu einer Mission. Mit rund 9 300 Mitarbeiterinnen und Mitarbeitern sowie 25 000 Studierenden ist das KIT eine der großen natur- und ingenieurwissenschaftlichen Forschungs- und Lehreinrichtungen Europas.

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft

Das KIT ist seit 2010 als familiengerechte Hochschule zertifiziert.

Diese Presseinformation ist im Internet abrufbar unter: http://www.kit.edu

Kontakt:

Monika Landgraf, Pressesprecherin, Leiterin Presse, Kaiserstraße 12, 76131 Karlsruhe
Telefon: +49 721 608-47414, Fax: +49 721 608-43658, E-Mail: presse@kit.edu

Monika Landgraf | Karlsruher Institut für Technologie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Verteidigung um fast jeden Preis
14.12.2017 | Max-Planck-Institut für Evolutionsbiologie, Plön

nachricht Mitochondrien von Krebszellen im Visier
14.12.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung

Der Forschergruppe von Prof. Dr. Markus Retsch an der Universität Bayreuth ist es erstmals gelungen, die von der Temperatur abhängige Wärmeleitfähigkeit mit Hilfe von polymeren Materialien präzise zu steuern. In der Zeitschrift Science Advances werden diese fortschrittlichen, zunächst für Laboruntersuchungen hergestellten Funktionsmaterialien beschrieben. Die hiermit gewonnenen Erkenntnisse sind von großer Relevanz für die Entwicklung neuer Konzepte zur Wärmedämmung.

Von Schmetterlingsflügeln zu neuen Funktionsmaterialien

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungen

Materialinnovationen 2018 – Werkstoff- und Materialforschungskonferenz des BMBF

13.12.2017 | Veranstaltungen

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Was für IT-Manager jetzt wichtig ist

14.12.2017 | Unternehmensmeldung

30 Baufritz-Läufer beim 25. Erkheimer Nikolaus-Straßenlauf

14.12.2017 | Unternehmensmeldung

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungsnachrichten