Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Pflanzen elektrische Felder spüren

06.07.2016

Eine internationale Forschungsgruppe hat den Sensor gefunden, mit dem Pflanzen elektrische Felder wahrnehmen. Kurioser Nebeneffekt: Ihre Arbeit könnte helfen zu verstehen, wie das Ebola-Virus in die Zellen des Menschen eindringt.

Die Zellen von Pflanzen, Tieren und Menschen nutzen elektrische Signale, um miteinander zu kommunizieren. Auf diese Weise sorgen Nervenzellen dafür, dass Muskeln in Aktion treten. Aber auch Blätter melden es mit elektrischen Signalen an andere Teile der Pflanze, wenn sie zum Beispiel verwundet wurden und Gefahr durch hungrige Insekten droht.


Der funktionelle Kaliumkanal TPC1 (l.). Wenn der Kanal öffnet, wird ein elektrisches Signal (rote Stromspur) ausgelöst, und Zellen tauschen Informationen aus.

Grafik: Dirk Becker

„Wir fragen uns seit vielen Jahren, mit welchen molekularen Komponenten sich Pflanzenzellen untereinander austauschen und wie sie die Veränderungen der elektrischen Spannung bemerken“, sagt Professor Rainer Hedrich, Inhaber des Lehrstuhls für Molekulare Pflanzenphysiologie und Biophysik an der Universität Würzburg.

Ergebnisse in „Plant Biology“ veröffentlicht

Dieses Thema beschäftigt Hedrich schon seit Mitte der 1980er-Jahre, als er noch Postdoktorand im Labor von Erwin Neher am Max-Planck-Institut in Göttingen war. „Wir haben damals mit Hilfe der Patch-Clamp-Technik in Pflanzenzellen erstmals einen Ionenkanal entdeckt, der durch Kalziumionen und ein elektrisches Feld aktiviert wird.“ 2005 fanden andere Wissenschaftler dann das Gen, das diesem Ionenkanal (Name: TPC1) zu Grunde liegt. Und nun hat wiederum Hedrichs Team den Teil des Kanals identifiziert, der als Sensor für elektrische Spannung funktioniert und den Kanal anschaltet.

Die Details dazu sind im Journal „Plant Biology“ veröffentlicht. Die Fachwelt hat sie aufmerksam registriert, und so wurde der Beitrag mittlerweile von der „Faculty of 1000“ (http://f1000.com/prime/726408866?bd=1&ui=203776) hervorgehoben. Diese renommierte Plattform, die wissenschaftliche Veröffentlichungen bewertet, wird von weltweit führenden Fachleuten aus Biologie und Medizin betrieben.

Teamwork deckte Kanalfunktion auf

Die Entdeckung des Spannungssensors beruht auf internationalem Teamwork. Erste Unterstützung holte sich Hedrich an seinem eigenen Lehrstuhl, bei Professor Thomas Müller. Der Strukturbiologe erstellte ein dreidimensionales Modell des TPC1-Kanalproteins. Dadurch ließen sich Bereiche im Protein eingrenzen, die als Spannungssensoren in Frage kommen. „Unser Modell zeigte deutlich, dass der TPC1-Kanal aus zwei miteinander verknüpften, fast identischen Proteineinheiten besteht, die beide je einen potenziellen Spannungssensoren formen könnten“, so Müller.

Noch mehr Licht ins Dunkel brachte eine Analyse zur Evolution des TPC1-Gens. Die Würzburger Wissenschaftler Jörg Schulz, Professor für Bioinformatik, und Dirk Becker, Arbeitsgruppenleiter am Julius-von-Sachs-Pflanzenforschungsinstitut, fanden heraus, dass das Gen erst mit der Evolution von Zellen mit Zellkern zum ersten Mal in Erscheinung tritt. Seitdem besitzen es wohl alle Lebewesen, den Menschen eingeschlossen. „Bei der Analyse fiel uns auf, dass sich die zweite Einheit des TPC1-Proteins im Laufe der Jahrmillionen kaum verändert hat. Sie ist bei einfachen Einzellern bis hin zu Pflanzen und Menschen fast identisch“, so Becker.

Mutationen gaben entscheidenden Hinweis

Der Spannungssensor war also in der zweiten Proteineinheit zu suchen. Die Arbeitsgruppe um die Würzburger Elektrophysiologin Irene Marten brachte dann den entscheidenden experimentellen Hinweis: Pflanzen mit Mutationen in einer speziellen Untereinheit des Kanals haben ihre Fähigkeit verloren, auf das elektrische Feld zu reagieren.

„Gemeinsam mit den ehemaligen Würzburger Biophysikern Gerald Schönknecht, der jetzt an der Oklahoma State University in den USA forscht, und Ingo Dreyer, der nun an der University Talca in Chile ist, haben wir dann ein mathematisches Modell erarbeitet. Es kann erklären, wie der elektrische Schalter im TPC1-Kanalprotein auf molekularer Ebene arbeitet“, erklärt Hedrich.

Was der Pflanzenkanal mit Ebola zu tun hat

Wie wirken sich die Mutationen am TPC1-Kanal aus? Nach den Erkenntnissen der Wissenschaftler lassen sie die Pflanze verwundet erscheinen und verändern die Wahrnehmung und Abwehr von Krankheitserregern. Schon in einer Veröffentlichung von 2009 haben die Würzburger gezeigt, dass Pflanzen, die eine hyperaktive Form des Kanals besitzen, in ständiger Alarmbereitschaft sind und überempfindlich auf Verwundungen oder Insektenbefall reagieren.

„Zusammen mit einer Schweizer Arbeitsgruppe untersuchen wir jetzt, durch welche Eingriffe in den krankmachenden Kanal die Pflanze wieder geheilt werden kann“, sagt Hedrich. „Vielleicht finden wir ja dabei auch Neues über den Infektionsweg von Ebola-Viren heraus.“ Denn diese Krankheitserreger nutzen den TPC1-Kanal des Menschen, um sich Zugang zu seinen Zellen zu verschaffen.

“Gating of the two-pore cation channel AtTPC1 in the plant vacuole is based on a single voltage-sensing domain.” Dawid Jaslan, Thomas D. Müller, Dirk Becker, Jörg Schultz, Tracey Cuin, Irene Marten, Ingo Dreyer, Gerlad Schönknecht und Rainer Hedrich. Plant Biology 2016, Jun 8. doi: 10.1111/plb.12478

Kontakt

Prof. Dr. Rainer Hedrich, Lehrstuhl für Molekulare Pflanzenphysiologie und Biophysik, Universität Würzburg, T (0931) 31-86100, hedrich@botanik.uni-wuerzburg.de

Gunnar Bartsch | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Entzündung weckt Schläfer
29.03.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

nachricht Rostocker Forscher wollen Glyphosat „entzaubern“
29.03.2017 | Universität Rostock

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Organisch-anorganische Heterostrukturen mit programmierbaren elektronischen Eigenschaften

29.03.2017 | Energie und Elektrotechnik

Klein bestimmt über groß?

29.03.2017 | Physik Astronomie

OLED-Produktionsanlage aus einer Hand

29.03.2017 | Messenachrichten