Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Pflanzen auf Blei als Schadstoff reagieren

25.06.2014

Bayreuther Pflanzenphysiologen entwickeln eine neue Untersuchungsmethode mit dem Ziel, den Bleigehalt in pflanzlichen Nahrungsmitteln nachhaltig senken zu können

Blei ist ein weiches, leicht zu verarbeitendes, aber hochgiftiges Metall, das einen erheblichen Anteil an der Schadstoffbelastung der Umwelt hat. Schon in geringsten Mengen kann es die Gesundheit von Menschen und Tieren ernsthaft beeinträchtigen.


Untersuchungen an Pflanzen der Spezies Arabidopsis thaliana (Schotenkresse) in der neuen, am Lehrstuhl für Pflanzenphysiologie entwickelten Nährflüssigkeit. Beim Wildtyp dieser Pflanze funktioniert die Entgiftung mittels der Synthese von Phytochelatinen. Bei einigen genetischen Variationen (Mutanten) hingegen ist dieser Prozess gestört, wodurch das Wachstum der Wurzeln erheblich beeinträchtigt wird.

Bild: Lehrstuhl für Pflanzenphysiologie, Universität Bayreuth;

mit Quellenangabe zur Veröffentlichung frei.

Umso größer ist weltweit das Interesse daran, den Bleigehalt in pflanzlichen Nahrungsmitteln erheblich zu senken. Dies setzt allerdings genaue Erkenntnisse darüber voraus, wie Pflanzen das in der Umwelt vorhandene Blei aufnehmen und einlagern. Mit einem neuen Verfahren, das ein Team um Prof. Dr. Stephan Clemens an der Universität Bayreuth entwickelt hat, sind

diesbezügliche Forschungsarbeiten jetzt auch mit sehr geringen Bleikonzentrationen möglich, wie sie in der Umwelt häufig anzutreffen sind. Im Fachjournal „Environmental Science and Technology“ stellt die Forschungsgruppe dieses Verfahren vor und berichtet über neue Einblicke in den Umgang von Pflanzen mit Blei-Ionen als Schadstoffen.

Simulationen äußerst geringer Bleikonzentrationen im Labor

Blei kommt in der Umwelt hauptsächlich als Teil anorganischer Verbindungen vor. Sofern es sich dabei um Bleisalze handelt, die im Wasser gelöst werden, gelangt es über die Wurzeln in die Blätter von Pflanzen. Die Bleimengen, welche die Pflanzen auf diese Weise absorbieren, sind umso größer, je niedriger der pH-Wert in den Böden ist. In der Forschung ist man sich darüber einig, dass Blei auch dann in Pflanzen gerät, wenn Böden nur sehr geringe Bleikonzentrationen – kleiner als 1 Mikromol pro Liter – enthalten.

Bereits diese winzigen Spuren von Blei haben eine giftige Wirkung. Damit nun die Bleiabsorption von Pflanzen und ihre Folgen für die Umwelt zuverlässig bestimmt werden können, müssen die Laborbedingungen möglichst realitätsnah sein. Den Pflanzen sollten also auch im Labor nur äußerst geringe Bleimengen zugeführt werden. Hierfür stand jedoch der Forschung bisher kein geeignetes Verfahren zur Verfügung, da Blei in den meisten Nährflüssigkeiten sehr schlecht löslich ist. Deshalb wurden oft tausendfach erhöhte Konzentrationen verwendet; ohne Rücksicht darauf, ob das Blei von den Pflanzen tatsächlich absorbiert werden kann.

Diese Schwierigkeit hat die Forschungsgruppe um Prof. Clemens jetzt überwinden können. Erstmals ist es gelungen, für Laboruntersuchungen eine Nährflüssigkeit zu entwickeln, die eine Bleikonzentration von weniger als 1 Mikromol pro Liter hat, daher realen Bodenverhältnissen entspricht und das Blei in bioverfügbarer Form enthält. Ein geringer Phosphatgehalt (weniger als 10 Mikromol pro Liter) und ein niedriger pH-Wert (5.0) bewirken, dass das Blei in diesem Medium vollständig gelöst ist und von den Pflanzen aufgenommen werden kann. Für die Experimente wurden dabei Pflanzen der Spezies Arabidopsis thaliana verwendet, die auch unter dem Namen „Schotenkresse“ bekannt ist. Sie kommt als Modellsystem besonders häufig bei pflanzenphysiologischen Forschungsarbeiten zum Einsatz.

Vergleichende Untersuchungen mit Mutanten

Wie reagieren Pflanzen auf Blei, das sie über ihre Wurzeln aufnehmen? Um darüber genauere Erkenntnisse zu gewinnen, hat sich das Bayreuther Forschungsteam mit der Phytochelatin-Synthese näher befasst. Dieser Prozess wird durch Metall-Ionen in der Nährflüssigkeit, insbesondere auch durch Blei-Ionen, ausgelöst. Er führt zur Herstellung spezieller Peptide, die wesentlich zur Entgiftung der Pflanze beitragen. Denn diese Peptide sind in der Lage, die in die Pflanze gelangten Bleisalze gleichsam einzufangen. Sie transportieren die Bleisalze ab und lagern sie in den Vakuolen ein. Hierbei handelt es sich um Speicherplätze im Zellinneren, wo das Blei für den Organismus der Pflanzen nur wenig Schaden anrichten kann.

Diese natürliche Entgiftung ist, wie sich bei Experimenten in den Bayreuther Laboratorien herausgestellt hat, bei einigen genetischen Variationen der Schotenkresse erheblich gestört. Es werden in diesen Mutanten viel zu wenige Peptide gebildet, die das Blei innerhalb des pflanzlichen Organismus entsorgen könnten. Folglich kann das Blei seine toxische Wirkung frei entfalten. Es hemmt insbesondere das Wurzelwachstum der Pflanzen. So konnten die Wissenschaftlerinnen und Wissenschaftler erstmals nachweisen, dass die Synthese von Phytochelatinen eine zentrale Bedeutung für die ‚Toleranz‘ der Pflanzen gegenüber Blei hat.

„Diese Forschungsergebnisse, die wir unter realitätsnäheren Laborbedingungen erzielt haben, liefern sehr interessante Anhaltspunkte dafür, wie Pflanzen auf Blei als Schadstoff in der Umwelt reagieren“, erklärt Prof. Clemens. „Wir wollen diese Untersuchungen weiter fortsetzen, um noch tiefer in diese Prozesse vorzudringen und besser zu verstehen, wie sich das durch menschliche Aktivitäten freigesetzte Blei in den Nahrungsketten der Natur verbreitet. Auf dieser Grundlage können dann im Bereich der Landwirtschaft oder der Umweltpolitik hoffentlich auch Maßnahmen entwickelt werden, die geeignet sind, den Bleigehalt insbesondere in pflanzlichen Nahrungsmitteln deutlich zu reduzieren.“ 

Veröffentlichung:

Sina Fischer, Tanja Kuehnlenz, Michael Thieme, Holger Schmidt, and Stephan Clemens, Analysis of plant Pb tolerance at realistic submicromolar concentrations demonstrates the role of phytochelatin synthesis for Pb detoxification,

in: Environmental Science & Technology (2014), Publication Date (Web): 28 May 2014, DOI: 10.1021/es405234p

Ansprechpartner:

Prof. Dr. Stephan Clemens Lehrstuhl für Pflanzenphysiologie Universität Bayreuth D-95440 Bayreuth Tel.: +49 (0)921 55-2630 E-Mail: stephan.clemens@uni-bayreuth.de

Christian Wißler | Universität Bayreuth

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mit Barcodes der Zellentwicklung auf der Spur
17.08.2017 | Deutsches Krebsforschungszentrum

nachricht Magenkrebs: Auch Bakterien können Auslöser sein
17.08.2017 | Charité – Universitätsmedizin Berlin

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Scharfe Röntgenblitze aus dem Atomkern

17.08.2017 | Physik Astronomie

Fake News finden und bekämpfen

17.08.2017 | Interdisziplinäre Forschung

Effizienz steigern, Kosten senken!

17.08.2017 | Messenachrichten