Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Organe von Pflanzenzellen miteinander „chatten“

04.11.2015

Ein Forscherteam unter Federführung der Universität Bonn hat eine Grundlage der Kommunikation in Pflanzenzellen entschlüsselt: Das Protein „MICU“ steuert an zentraler Stelle in den Zellkraftwerken die Kalziumionen-Konzentration. Mit diesen chemischen Signaturen regeln die Pflanzen zum Beispiel die Ausbildung von Organen und reagieren auf Wasserstress. Die Ergebnisse könnten in Zukunft auch dazu dienen, Nutzpflanzen zu optimieren. Die renommierte Fachzeitschrift „The Plant Cell“ berichtet in ihrer aktuellen Ausgabe über die Resultate.

Pflanzen reagieren in vielfältiger Weise auf Reize ihrer Umwelt: Wird das zur Verfügung stehende Wasser knapp, drosseln sie die Verdunstung aus ihren Blätter. Kommt ein Schädling daher, wappnen sie sich zum Beispiel mit chemischen Keulen.


Wurzelspitze der Acker-Schmalwand: Das fluoreszierende Sensorprotein gibt über die Kalziumionen in den Mitochondrien Auskunft. Blau zeigt niedrige, grün mittlere und rot hohe Konzentrationen an.

© Foto: Dr. Stephan Wagner

Möchte ein Bodenpilz zum gegenseitigen Vorteil in einer Art Wohngemeinschaft mit einer Pflanzenwurzel leben, dann sprechen beide Partner über ihre Pflichten.

„All diese Feinjustierungen erfordern ein großes Maß an Kommunikation zwischen den einzelnen Organen der Pflanzenzellen“, sagt Dr. Markus Schwarzländer, Leiter einer Emmy-Noether-Gruppe am Institut für Nutzpflanzenwissenschaften und Ressourcenschutz der Universität Bonn.

Wenn verschiedene Bestandteile von Pflanzenzellen miteinander kommunizieren, nutzen sie keine Worte, sondern Kalziumionen – also positiv geladene Kalziumatome.

„Die Information ist in den Schwankungen der Kalziumkonzentration der unterschiedlichen Zellkompartimente codiert“, erläutert Dr. Schwarzländer. Wie kann ein einzelnes Ion so viele Informationen beinhalten und weiterleiten? Das fragen sich Wissenschaftler, seit bekannt ist, wie verschiedene Zellkompartimente miteinander „chatten“.

Das Protein „MICU“ ist eine zentrale Relaisstation

Einen Lichtstrahl ins Dunkel bringt nun ein Forscherteam um Dr. Schwarzländer, der mit Wissenschaftlern aus Italien, Frankreich, England, Australien sowie dem Max-Planck-Institut für Pflanzenzüchtungsforschung in Köln und der Universität Münster neue Erkenntnisse zur Kalziumionen-Kommunikation der Pflanzen gewonnen hat.

Anhand der Zellkraftwerke (Mitochondrien) der Ackerschmalwand (Arabidopsis thaliana) entdeckten die Wissenschaftler, dass das Protein „MICU“ eine zentrale Stellung in der Steuerung der Kalziumionen-Konzentration in den Mitochondrien einnimmt.

„Bei Säugetieren gibt es ein ganz ähnliches Protein, das ebenfalls die Menge an Kalziumionen reguliert“, sagt Dr. Stephan Wagner aus dem Team von Dr. Schwarzländer. Es bringt die Mitochondrien der Säuger wie ein Turbolader dazu, mehr Energie bereitzustellen.

Die Wissenschaftler spekulierten, dass es sich dabei um einen interessanten Kandidaten handeln könnte, waren dann aber doch überrascht, als sie mit dem eng verwandten pflanzlichen „MICU“ eine zentrale Relaisstation im Kommunikationssystem von Arabidopsis ausfindig machten. „Die beiden sich ähnelnden Proteine in Tieren und Pflanzen sind offenbar aus einem gemeinsamen Vorfahren hervorgegangen, haben aber im Lauf der Jahrmillionen eigene Charakteristika entwickelt“, sagt Dr. Schwarzländer.

Fluoreszierende Zellkraftwerke geben Aufschluss

Indem die Forscher das Gen mit dem MICU-Bauplan im Arabidopsis-Genom zerstörten, konnten sie experimentell herausfinden, welchen Einfluss das Protein auf die Kalzium-Kommunikation der Pflanzen hat. Sie koppelten die Mitochondrien mit einem fluoreszierenden Sensorprotein. Anhand der unterschiedlichen Fluoreszenzintensitäten war es nun möglich, Veränderungen in den Kalzium-Konzentrationen der Zellkraftwerke in der lebenden Pflanze sichtbar zu machen.

„Wir konnten eindeutig Einflüsse auf die Kommunikation der Mitochondrien feststellen“, berichtet Dr. Wagner. Das ausgeschaltete MICU-Gen sorgte unter anderem für veränderte Eigenschaften der Zellatmung.

„Mit unseren Erkenntnissen haben wir die Grundlage geschaffen, Einfluss auf die Kalzium-Signale in spezifischen Teilen der Pflanzenzelle zu nehmen“, fasst Dr. Schwarzländer zusammen. Da Arabidopsis als experimentelles Modell für viele Feldfrüchte gilt, lassen sich die Erkenntnisse in Zukunft möglicherweise auch für die Optimierung von Nutzpflanzen anwenden. Wenn man zum Beispiel beliebigen Pflanzen über veränderte Kalzium-Signale beibringen könnte, sich mit stickstofffixierenden Bodenbakterien zu verbünden, ließe sich viel Dünger in der Landwirtschaft einsparen, blicken die Forscher in die Zukunft.

Publikation: The EF-Hand Ca2+ Binding Protein MICU Choreographs Mitochondrial Ca2+ Dynamics in Arabidopsis, Fachjournal “The Plant Cell“, DOI: 10.1105/tpc.15.00509

Kontakt:

Dr. Markus Schwarzländer
Plant Energy Biology Lab
Institut für Nutzpflanzenwissenschaften und Ressourcenschutz
Universität Bonn
Tel. 0228/7354266
E-Mail: markus.schwarzlander@uni-bonn.de

Weitere Informationen:

http://www.plantcell.org/content/early/2015/11/03/tpc.15.00509.abstract Publikation im Internet

Johannes Seiler | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mit grüner Chemie gegen Malaria
21.02.2018 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

nachricht Vom künstlichen Hüftgelenk bis zum Fahrradsattel
21.02.2018 | Frankfurt University of Applied Sciences

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon

Die Entwicklung von Leichtbaustrukturen ist eines der zentralen Zukunftsthemen unserer Gesellschaft. Besonders in der Luftfahrtindustrie und in anderen Transportbereichen sind Leichtbaustrukturen gefragt. Sie ermöglichen Energieeinsparungen und reduzieren den Ressourcenverbrauch bei Treibstoffen und Material. Zum Einsatz kommen dabei Verbundmaterialien in der so genannten Sandwich-Bauweise. Diese bestehen aus zwei dünnen, steifen und hochfesten Deckschichten mit einer dazwischen liegenden dicken, vergleichsweise leichten und weichen Mittelschicht, dem Sandwich-Kern.

Aramidpapier ist ein etabliertes Material für solche Sandwichkerne. Sein mechanisches Strukturversagen ist jedoch noch unzureichend erforscht: Bislang fehlten...

Im Focus: Die Brücke, die sich dehnen kann

Brücken verformen sich, daher baut man normalerweise Dehnfugen ein. An der TU Wien wurde eine Technik entwickelt, die ohne Fugen auskommt und dadurch viel Geld und Aufwand spart.

Wer im Auto mit flottem Tempo über eine Brücke fährt, spürt es sofort: Meist rumpelt man am Anfang und am Ende der Brücke über eine Dehnfuge, die dort...

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

Tag der Seltenen Erkrankungen – Deutsche Leberstiftung informiert über seltene Lebererkrankungen

21.02.2018 | Veranstaltungen

Digitalisierung auf dem Prüfstand: Hochkarätige Konferenz zu Empowerment in der agilen Arbeitswelt

20.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Kameratechnologie in Fahrzeugen: Bilddaten latenzarm komprimiert

21.02.2018 | Messenachrichten

Mit grüner Chemie gegen Malaria

21.02.2018 | Biowissenschaften Chemie

Periimplantitis: BMBF fördert zahnärztliches Verbund-Projekt mit 1,1 Millionen Euro

21.02.2018 | Förderungen Preise

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics