Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Organe von Pflanzenzellen miteinander „chatten“

04.11.2015

Ein Forscherteam unter Federführung der Universität Bonn hat eine Grundlage der Kommunikation in Pflanzenzellen entschlüsselt: Das Protein „MICU“ steuert an zentraler Stelle in den Zellkraftwerken die Kalziumionen-Konzentration. Mit diesen chemischen Signaturen regeln die Pflanzen zum Beispiel die Ausbildung von Organen und reagieren auf Wasserstress. Die Ergebnisse könnten in Zukunft auch dazu dienen, Nutzpflanzen zu optimieren. Die renommierte Fachzeitschrift „The Plant Cell“ berichtet in ihrer aktuellen Ausgabe über die Resultate.

Pflanzen reagieren in vielfältiger Weise auf Reize ihrer Umwelt: Wird das zur Verfügung stehende Wasser knapp, drosseln sie die Verdunstung aus ihren Blätter. Kommt ein Schädling daher, wappnen sie sich zum Beispiel mit chemischen Keulen.


Wurzelspitze der Acker-Schmalwand: Das fluoreszierende Sensorprotein gibt über die Kalziumionen in den Mitochondrien Auskunft. Blau zeigt niedrige, grün mittlere und rot hohe Konzentrationen an.

© Foto: Dr. Stephan Wagner

Möchte ein Bodenpilz zum gegenseitigen Vorteil in einer Art Wohngemeinschaft mit einer Pflanzenwurzel leben, dann sprechen beide Partner über ihre Pflichten.

„All diese Feinjustierungen erfordern ein großes Maß an Kommunikation zwischen den einzelnen Organen der Pflanzenzellen“, sagt Dr. Markus Schwarzländer, Leiter einer Emmy-Noether-Gruppe am Institut für Nutzpflanzenwissenschaften und Ressourcenschutz der Universität Bonn.

Wenn verschiedene Bestandteile von Pflanzenzellen miteinander kommunizieren, nutzen sie keine Worte, sondern Kalziumionen – also positiv geladene Kalziumatome.

„Die Information ist in den Schwankungen der Kalziumkonzentration der unterschiedlichen Zellkompartimente codiert“, erläutert Dr. Schwarzländer. Wie kann ein einzelnes Ion so viele Informationen beinhalten und weiterleiten? Das fragen sich Wissenschaftler, seit bekannt ist, wie verschiedene Zellkompartimente miteinander „chatten“.

Das Protein „MICU“ ist eine zentrale Relaisstation

Einen Lichtstrahl ins Dunkel bringt nun ein Forscherteam um Dr. Schwarzländer, der mit Wissenschaftlern aus Italien, Frankreich, England, Australien sowie dem Max-Planck-Institut für Pflanzenzüchtungsforschung in Köln und der Universität Münster neue Erkenntnisse zur Kalziumionen-Kommunikation der Pflanzen gewonnen hat.

Anhand der Zellkraftwerke (Mitochondrien) der Ackerschmalwand (Arabidopsis thaliana) entdeckten die Wissenschaftler, dass das Protein „MICU“ eine zentrale Stellung in der Steuerung der Kalziumionen-Konzentration in den Mitochondrien einnimmt.

„Bei Säugetieren gibt es ein ganz ähnliches Protein, das ebenfalls die Menge an Kalziumionen reguliert“, sagt Dr. Stephan Wagner aus dem Team von Dr. Schwarzländer. Es bringt die Mitochondrien der Säuger wie ein Turbolader dazu, mehr Energie bereitzustellen.

Die Wissenschaftler spekulierten, dass es sich dabei um einen interessanten Kandidaten handeln könnte, waren dann aber doch überrascht, als sie mit dem eng verwandten pflanzlichen „MICU“ eine zentrale Relaisstation im Kommunikationssystem von Arabidopsis ausfindig machten. „Die beiden sich ähnelnden Proteine in Tieren und Pflanzen sind offenbar aus einem gemeinsamen Vorfahren hervorgegangen, haben aber im Lauf der Jahrmillionen eigene Charakteristika entwickelt“, sagt Dr. Schwarzländer.

Fluoreszierende Zellkraftwerke geben Aufschluss

Indem die Forscher das Gen mit dem MICU-Bauplan im Arabidopsis-Genom zerstörten, konnten sie experimentell herausfinden, welchen Einfluss das Protein auf die Kalzium-Kommunikation der Pflanzen hat. Sie koppelten die Mitochondrien mit einem fluoreszierenden Sensorprotein. Anhand der unterschiedlichen Fluoreszenzintensitäten war es nun möglich, Veränderungen in den Kalzium-Konzentrationen der Zellkraftwerke in der lebenden Pflanze sichtbar zu machen.

„Wir konnten eindeutig Einflüsse auf die Kommunikation der Mitochondrien feststellen“, berichtet Dr. Wagner. Das ausgeschaltete MICU-Gen sorgte unter anderem für veränderte Eigenschaften der Zellatmung.

„Mit unseren Erkenntnissen haben wir die Grundlage geschaffen, Einfluss auf die Kalzium-Signale in spezifischen Teilen der Pflanzenzelle zu nehmen“, fasst Dr. Schwarzländer zusammen. Da Arabidopsis als experimentelles Modell für viele Feldfrüchte gilt, lassen sich die Erkenntnisse in Zukunft möglicherweise auch für die Optimierung von Nutzpflanzen anwenden. Wenn man zum Beispiel beliebigen Pflanzen über veränderte Kalzium-Signale beibringen könnte, sich mit stickstofffixierenden Bodenbakterien zu verbünden, ließe sich viel Dünger in der Landwirtschaft einsparen, blicken die Forscher in die Zukunft.

Publikation: The EF-Hand Ca2+ Binding Protein MICU Choreographs Mitochondrial Ca2+ Dynamics in Arabidopsis, Fachjournal “The Plant Cell“, DOI: 10.1105/tpc.15.00509

Kontakt:

Dr. Markus Schwarzländer
Plant Energy Biology Lab
Institut für Nutzpflanzenwissenschaften und Ressourcenschutz
Universität Bonn
Tel. 0228/7354266
E-Mail: markus.schwarzlander@uni-bonn.de

Weitere Informationen:

http://www.plantcell.org/content/early/2015/11/03/tpc.15.00509.abstract Publikation im Internet

Johannes Seiler | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Sollbruchstellen im Rückgrat - Bioabbaubare Polymere durch chemische Gasphasenabscheidung
02.12.2016 | Gesellschaft Deutscher Chemiker e.V.

nachricht "Fingerabdruck" diffuser Protonen entschlüsselt
02.12.2016 | Universität Leipzig

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie