Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Organe von Pflanzenzellen miteinander „chatten“

04.11.2015

Ein Forscherteam unter Federführung der Universität Bonn hat eine Grundlage der Kommunikation in Pflanzenzellen entschlüsselt: Das Protein „MICU“ steuert an zentraler Stelle in den Zellkraftwerken die Kalziumionen-Konzentration. Mit diesen chemischen Signaturen regeln die Pflanzen zum Beispiel die Ausbildung von Organen und reagieren auf Wasserstress. Die Ergebnisse könnten in Zukunft auch dazu dienen, Nutzpflanzen zu optimieren. Die renommierte Fachzeitschrift „The Plant Cell“ berichtet in ihrer aktuellen Ausgabe über die Resultate.

Pflanzen reagieren in vielfältiger Weise auf Reize ihrer Umwelt: Wird das zur Verfügung stehende Wasser knapp, drosseln sie die Verdunstung aus ihren Blätter. Kommt ein Schädling daher, wappnen sie sich zum Beispiel mit chemischen Keulen.


Wurzelspitze der Acker-Schmalwand: Das fluoreszierende Sensorprotein gibt über die Kalziumionen in den Mitochondrien Auskunft. Blau zeigt niedrige, grün mittlere und rot hohe Konzentrationen an.

© Foto: Dr. Stephan Wagner

Möchte ein Bodenpilz zum gegenseitigen Vorteil in einer Art Wohngemeinschaft mit einer Pflanzenwurzel leben, dann sprechen beide Partner über ihre Pflichten.

„All diese Feinjustierungen erfordern ein großes Maß an Kommunikation zwischen den einzelnen Organen der Pflanzenzellen“, sagt Dr. Markus Schwarzländer, Leiter einer Emmy-Noether-Gruppe am Institut für Nutzpflanzenwissenschaften und Ressourcenschutz der Universität Bonn.

Wenn verschiedene Bestandteile von Pflanzenzellen miteinander kommunizieren, nutzen sie keine Worte, sondern Kalziumionen – also positiv geladene Kalziumatome.

„Die Information ist in den Schwankungen der Kalziumkonzentration der unterschiedlichen Zellkompartimente codiert“, erläutert Dr. Schwarzländer. Wie kann ein einzelnes Ion so viele Informationen beinhalten und weiterleiten? Das fragen sich Wissenschaftler, seit bekannt ist, wie verschiedene Zellkompartimente miteinander „chatten“.

Das Protein „MICU“ ist eine zentrale Relaisstation

Einen Lichtstrahl ins Dunkel bringt nun ein Forscherteam um Dr. Schwarzländer, der mit Wissenschaftlern aus Italien, Frankreich, England, Australien sowie dem Max-Planck-Institut für Pflanzenzüchtungsforschung in Köln und der Universität Münster neue Erkenntnisse zur Kalziumionen-Kommunikation der Pflanzen gewonnen hat.

Anhand der Zellkraftwerke (Mitochondrien) der Ackerschmalwand (Arabidopsis thaliana) entdeckten die Wissenschaftler, dass das Protein „MICU“ eine zentrale Stellung in der Steuerung der Kalziumionen-Konzentration in den Mitochondrien einnimmt.

„Bei Säugetieren gibt es ein ganz ähnliches Protein, das ebenfalls die Menge an Kalziumionen reguliert“, sagt Dr. Stephan Wagner aus dem Team von Dr. Schwarzländer. Es bringt die Mitochondrien der Säuger wie ein Turbolader dazu, mehr Energie bereitzustellen.

Die Wissenschaftler spekulierten, dass es sich dabei um einen interessanten Kandidaten handeln könnte, waren dann aber doch überrascht, als sie mit dem eng verwandten pflanzlichen „MICU“ eine zentrale Relaisstation im Kommunikationssystem von Arabidopsis ausfindig machten. „Die beiden sich ähnelnden Proteine in Tieren und Pflanzen sind offenbar aus einem gemeinsamen Vorfahren hervorgegangen, haben aber im Lauf der Jahrmillionen eigene Charakteristika entwickelt“, sagt Dr. Schwarzländer.

Fluoreszierende Zellkraftwerke geben Aufschluss

Indem die Forscher das Gen mit dem MICU-Bauplan im Arabidopsis-Genom zerstörten, konnten sie experimentell herausfinden, welchen Einfluss das Protein auf die Kalzium-Kommunikation der Pflanzen hat. Sie koppelten die Mitochondrien mit einem fluoreszierenden Sensorprotein. Anhand der unterschiedlichen Fluoreszenzintensitäten war es nun möglich, Veränderungen in den Kalzium-Konzentrationen der Zellkraftwerke in der lebenden Pflanze sichtbar zu machen.

„Wir konnten eindeutig Einflüsse auf die Kommunikation der Mitochondrien feststellen“, berichtet Dr. Wagner. Das ausgeschaltete MICU-Gen sorgte unter anderem für veränderte Eigenschaften der Zellatmung.

„Mit unseren Erkenntnissen haben wir die Grundlage geschaffen, Einfluss auf die Kalzium-Signale in spezifischen Teilen der Pflanzenzelle zu nehmen“, fasst Dr. Schwarzländer zusammen. Da Arabidopsis als experimentelles Modell für viele Feldfrüchte gilt, lassen sich die Erkenntnisse in Zukunft möglicherweise auch für die Optimierung von Nutzpflanzen anwenden. Wenn man zum Beispiel beliebigen Pflanzen über veränderte Kalzium-Signale beibringen könnte, sich mit stickstofffixierenden Bodenbakterien zu verbünden, ließe sich viel Dünger in der Landwirtschaft einsparen, blicken die Forscher in die Zukunft.

Publikation: The EF-Hand Ca2+ Binding Protein MICU Choreographs Mitochondrial Ca2+ Dynamics in Arabidopsis, Fachjournal “The Plant Cell“, DOI: 10.1105/tpc.15.00509

Kontakt:

Dr. Markus Schwarzländer
Plant Energy Biology Lab
Institut für Nutzpflanzenwissenschaften und Ressourcenschutz
Universität Bonn
Tel. 0228/7354266
E-Mail: markus.schwarzlander@uni-bonn.de

Weitere Informationen:

http://www.plantcell.org/content/early/2015/11/03/tpc.15.00509.abstract Publikation im Internet

Johannes Seiler | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Usutu-Virus verringert Amselpopulation im Ausbruchsgebiet
22.11.2017 | Bernhard-Nocht-Institut für Tropenmedizin

nachricht 26 neue Zwergfrösche aus Madagaskar
22.11.2017 | Staatliche Naturwissenschaftliche Sammlungen Bayerns

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kleine Strukturen – große Wirkung

Innovative Schutzschicht für geringen Verbrauch künftiger Rolls-Royce Flugtriebwerke entwickelt

Gemeinsam mit Rolls-Royce Deutschland hat das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS im Rahmen von zwei Vorhaben aus dem...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Zahnimplantate: Forschungsergebnisse und ihre Konsequenzen – 31. Kongress der DGI

22.11.2017 | Veranstaltungen

Tagung widmet sich dem Thema Autonomes Fahren

21.11.2017 | Veranstaltungen

Neues Elektro-Forschungsfahrzeug am Institut für Mikroelektronische Systeme

21.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Autonomes Fahren – und dann?

22.11.2017 | Verkehr Logistik

Material mit vielversprechenden Eigenschaften

22.11.2017 | Materialwissenschaften

Forscherteam am IST Austria definiert Funktion eines rätselhaften Synapsen-Proteins

22.11.2017 | Biowissenschaften Chemie