Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Mitochondrien in Form gebracht werden

08.05.2015

Göttinger Wissenschaftler entdecken Protein, das die Membran in den zellulären Kraftwerken formt. Veröffentlicht in Fachzeitschrift „Cell Metabolism“.

Mitochondrien sind die Kraftwerke der Zellen. Sie produzieren einen Großteil der Energie, die Tiere und Pflanzen zum Leben benötigen. Um das leisten zu können, besitzen sie eine besondere Struktur: In ihrem Inneren befindet sich eine stark gefaltete Membran.


Membranbläschen mit (links) und ohne das Protein Mic10 (rechts). Mic10 führt zu Einstülpungen der Membran (blau gefärbt).

Foto: Meinecke

Eine Forschungsgruppe unter der Leitung von Prof. Dr. Michael Meinecke, European Neuroscience Institute Göttingen (ENI-G) und Mitglied im Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), hat nun ein Protein entdeckt, das bei dieser Faltung eine wichtige Rolle spielt. Die Forschungsergebnisse sind in der renommierten englischsprachigen Fachzeitschrift „Cell Metabolism“ er-schienen.

Originalveröffentlichung: Barbot M, Jans DC, Schulz C, Denkert N, Kroppen B, Hoppert M, Jakobs S, Meinecke M. Mic10 oligomerizes to bend mitochondrial inner membranes at cristae junctions. Cell Metabolism 21, 756-763, (2015)
doi: http://dx.doi.org/10.1016/j.cmet.2015.04.006

HINTERGRUNDINFORMATIONEN
Einige Hundert Mitochondrien gibt es durchschnittlich in jeder Zelle. Sie haben gleich mehrere Aufgaben: Sie stellen Adenosintriphosphat (ATP) her, den wichtigsten Energieträger in Zellen. Außerdem produzieren sie eine Vielzahl von Proteinen und andere chemische Verbindungen, die für die Zelle unverzichtbar sind. Auch beim programmierten Zelltod, der Apoptose, sind sie von zentraler Bedeutung. Um diese verschiedenen Funktionen erfüllen zu können, haben Mitochondrien einen besonderen Aufbau. Neben ihrer äußeren Membran besitzen sie eine weitere, innere Membran. Im Gegensatz zur äußeren ist diese innere Membran nicht glatt, sondern in Falten gelegt, die einen Großteil des Innenraums der Mitochondrien ausfüllen. Die Falten vergrößern die Membranoberfläche in den Mitochondrien. Damit steht mehr Platz für die vielen Stoffwechselvorgänge zur Verfügung, die dort ablaufen.

FORSCHUNGSERGEBNISSE IM DETAIL
Wie wichtig die besondere Gestalt der inneren Mitochondrienmembran ist, zeigt sich, wenn die Faltung gestört ist: Eine solche Veränderung löst in Zellen oft den programmierten Zelltod aus, die Zellen sterben. Bisher war wenig darüber bekannt, welche Faktoren und Mechanismen die Faltung der Membran steuern. „Wir haben herausgefunden, dass das Protein Mic10 die Form von Membranen verändern kann und wie es in den Mitochondrien die Faltenbildung steuert“, sagt Prof. Dr. Michael Meinecke, Senior-Autor der Publikation und Leiter der Forschergruppe „Molecular Membrane Biology“.

OHNE MIC10 FUNKTIONIERT DIE FALTENBILDUNG NICHT
Das Protein Mic10 ist Bestandteil des MICOS-Komplexes, der aus mehreren Proteinen zusammengesetzt ist und in Mitochondrien am Beginn der Membranfalten sitzt. „Seit Kurzem ist bekannt, dass MICOS notwendig ist, damit sich die innere Mitochondrienmembran richtig faltet“, sagt Prof. Meinecke. „Insbesondere, wenn das Mic10-Protein fehlt, ändert sich die Form der Membranfalten drastisch.“

Die Göttinger Forscher wollten herausfinden, wie Mic10 an der Faltenbildung beteiligt ist. Dafür schleusten sie das Protein zunächst im Reagenzglas in künstliche, faltenlose Membranbläschen ein. „Als wir diese Bläschen dann unter dem Mikroskop betrachteten, fanden wir röhrenförmige Einstülpungen der Membran“, sagt Mariam Barbot, Erst-Autorin der Publikation und Doktorandin in der Forschungsgruppe Molecular Membrane Biology. „Damit hatten wir den Beweis, dass Mic10 die Form von Membranen verändern kann.“

Doch wie genau schafft es Mic10, Membranen zu verformen? Die Wissenschaftler fanden heraus, dass das Protein mit einem Teil in der inneren, gefalteten Mitochondrienmembran verankert ist. Die Daten lassen vermuten, dass dieser Teil von Mic10 dabei die Form eines Keils annimmt. „Am breiten Ende des Keils würde mehr Membran verdrängt als am spitzen Ende, so dass sich in der Membran eine Kurve bildet“, sagt Prof. Meinecke. „Die Keilform könnte damit erklären, wie Mic10 zur Faltenbildung beiträgt.“

Von anderen Membransystemen weiß man, dass sich häufig mehrere identische Proteine zusammenlagern, um die Gestalt der Membran zu verändern. Die Biochemiker testeten als nächstes, ob auch Mic10 auf diese Weise funktioniert. Dafür veränderten sie das Protein so, dass es seinesgleichen nicht mehr binden konnte. Das so manipulierte Mic10 brachten die Forscher in Membranbläschen. „Tatsächlich bildeten die Bläschen keine Einstülpungen mehr“, sagt Barbot. „Die Mic10-Proteine können Membranen also nur falten, wenn sie sich zu mehreren zusammenlagern.“

VERSUCHE IN HEFEZELLEN BESTÄTIGEN ERGEBNISSE
Um herauszufinden, ob Mic10 so auch in lebenden Zellen arbeitet, wiederholten die Wissenschaftler ihre Versuche in Hefezellen. Diese eignen sich für derartige Untersuchungen besonders gut, da sie sich leicht manipulieren lassen und tierischen Zellen sehr ähnlich sind. Die Experimente führten die Wissenschaftler in Zusammenarbeit mit der Forschungsgruppe Struktur und Dynamik von Mitochondrien von Prof. Dr. Stefan Jakobs am Max-Planck-Institut für biophysikalische Chemie in Göttingen durch. Die Beobachtungen aus den Versuchen mit Hefezellen bestätigten die bisherigen Erkenntnisse: Mit verändertem Mic10, das sich nicht mehr mit anderen Mic10-Proteinen zusammenlagern konnte, war die Faltenbildung auch in den Hefe-Mitochondrien gestört. Nur Zellen mit normalem Mic10 hatten natürlich gefaltete Membranen.

Die neuen Erkenntnisse über Mic10 bringen nicht nur Licht ins Dunkel der Mitochondrien. Auch Membranen in anderen Zellbestandteilen zeigen besondere Formen. Meist ist nur wenig darüber bekannt, wie diese zustande kommen. Möglicherweise funktioniert die Faltung dort ähnlich wie im Fall von Mic10 in den Mitochondrien.

WEITERE INFORMATIONEN:
Universitätsmedizin Göttingen, Georg-August-Universität
Institut für Zellbiochemie
Associated Research Group
European Neuroscience Institute Göttingen (ENI-G)
Molecular Membrane Biology
Prof. Dr. Michael Meinecke, Telefon: 0551 / 39-8189
Humboldtallee 23, 37073 Göttingen
michael.meinecke@med.uni-goettingen.de

Stefan Weller | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.universitaetsmedizin-goettingen.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht UVB-Strahlung beeinflusst Verhalten von Stichlingen
13.12.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Mikroorganismen auf zwei Kontinenten studieren
13.12.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Materialinnovationen 2018 – Werkstoff- und Materialforschungskonferenz des BMBF

13.12.2017 | Veranstaltungen

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rest-Spannung trotz Megabeben

13.12.2017 | Geowissenschaften

Computermodell weist den Weg zu effektiven Kombinationstherapien bei Darmkrebs

13.12.2017 | Medizin Gesundheit

Winzige Weltenbummler: In Arktis und Antarktis leben die gleichen Bakterien

13.12.2017 | Geowissenschaften