Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Mitochondrien in Form gebracht werden

08.05.2015

Göttinger Wissenschaftler entdecken Protein, das die Membran in den zellulären Kraftwerken formt. Veröffentlicht in Fachzeitschrift „Cell Metabolism“.

Mitochondrien sind die Kraftwerke der Zellen. Sie produzieren einen Großteil der Energie, die Tiere und Pflanzen zum Leben benötigen. Um das leisten zu können, besitzen sie eine besondere Struktur: In ihrem Inneren befindet sich eine stark gefaltete Membran.


Membranbläschen mit (links) und ohne das Protein Mic10 (rechts). Mic10 führt zu Einstülpungen der Membran (blau gefärbt).

Foto: Meinecke

Eine Forschungsgruppe unter der Leitung von Prof. Dr. Michael Meinecke, European Neuroscience Institute Göttingen (ENI-G) und Mitglied im Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), hat nun ein Protein entdeckt, das bei dieser Faltung eine wichtige Rolle spielt. Die Forschungsergebnisse sind in der renommierten englischsprachigen Fachzeitschrift „Cell Metabolism“ er-schienen.

Originalveröffentlichung: Barbot M, Jans DC, Schulz C, Denkert N, Kroppen B, Hoppert M, Jakobs S, Meinecke M. Mic10 oligomerizes to bend mitochondrial inner membranes at cristae junctions. Cell Metabolism 21, 756-763, (2015)
doi: http://dx.doi.org/10.1016/j.cmet.2015.04.006

HINTERGRUNDINFORMATIONEN
Einige Hundert Mitochondrien gibt es durchschnittlich in jeder Zelle. Sie haben gleich mehrere Aufgaben: Sie stellen Adenosintriphosphat (ATP) her, den wichtigsten Energieträger in Zellen. Außerdem produzieren sie eine Vielzahl von Proteinen und andere chemische Verbindungen, die für die Zelle unverzichtbar sind. Auch beim programmierten Zelltod, der Apoptose, sind sie von zentraler Bedeutung. Um diese verschiedenen Funktionen erfüllen zu können, haben Mitochondrien einen besonderen Aufbau. Neben ihrer äußeren Membran besitzen sie eine weitere, innere Membran. Im Gegensatz zur äußeren ist diese innere Membran nicht glatt, sondern in Falten gelegt, die einen Großteil des Innenraums der Mitochondrien ausfüllen. Die Falten vergrößern die Membranoberfläche in den Mitochondrien. Damit steht mehr Platz für die vielen Stoffwechselvorgänge zur Verfügung, die dort ablaufen.

FORSCHUNGSERGEBNISSE IM DETAIL
Wie wichtig die besondere Gestalt der inneren Mitochondrienmembran ist, zeigt sich, wenn die Faltung gestört ist: Eine solche Veränderung löst in Zellen oft den programmierten Zelltod aus, die Zellen sterben. Bisher war wenig darüber bekannt, welche Faktoren und Mechanismen die Faltung der Membran steuern. „Wir haben herausgefunden, dass das Protein Mic10 die Form von Membranen verändern kann und wie es in den Mitochondrien die Faltenbildung steuert“, sagt Prof. Dr. Michael Meinecke, Senior-Autor der Publikation und Leiter der Forschergruppe „Molecular Membrane Biology“.

OHNE MIC10 FUNKTIONIERT DIE FALTENBILDUNG NICHT
Das Protein Mic10 ist Bestandteil des MICOS-Komplexes, der aus mehreren Proteinen zusammengesetzt ist und in Mitochondrien am Beginn der Membranfalten sitzt. „Seit Kurzem ist bekannt, dass MICOS notwendig ist, damit sich die innere Mitochondrienmembran richtig faltet“, sagt Prof. Meinecke. „Insbesondere, wenn das Mic10-Protein fehlt, ändert sich die Form der Membranfalten drastisch.“

Die Göttinger Forscher wollten herausfinden, wie Mic10 an der Faltenbildung beteiligt ist. Dafür schleusten sie das Protein zunächst im Reagenzglas in künstliche, faltenlose Membranbläschen ein. „Als wir diese Bläschen dann unter dem Mikroskop betrachteten, fanden wir röhrenförmige Einstülpungen der Membran“, sagt Mariam Barbot, Erst-Autorin der Publikation und Doktorandin in der Forschungsgruppe Molecular Membrane Biology. „Damit hatten wir den Beweis, dass Mic10 die Form von Membranen verändern kann.“

Doch wie genau schafft es Mic10, Membranen zu verformen? Die Wissenschaftler fanden heraus, dass das Protein mit einem Teil in der inneren, gefalteten Mitochondrienmembran verankert ist. Die Daten lassen vermuten, dass dieser Teil von Mic10 dabei die Form eines Keils annimmt. „Am breiten Ende des Keils würde mehr Membran verdrängt als am spitzen Ende, so dass sich in der Membran eine Kurve bildet“, sagt Prof. Meinecke. „Die Keilform könnte damit erklären, wie Mic10 zur Faltenbildung beiträgt.“

Von anderen Membransystemen weiß man, dass sich häufig mehrere identische Proteine zusammenlagern, um die Gestalt der Membran zu verändern. Die Biochemiker testeten als nächstes, ob auch Mic10 auf diese Weise funktioniert. Dafür veränderten sie das Protein so, dass es seinesgleichen nicht mehr binden konnte. Das so manipulierte Mic10 brachten die Forscher in Membranbläschen. „Tatsächlich bildeten die Bläschen keine Einstülpungen mehr“, sagt Barbot. „Die Mic10-Proteine können Membranen also nur falten, wenn sie sich zu mehreren zusammenlagern.“

VERSUCHE IN HEFEZELLEN BESTÄTIGEN ERGEBNISSE
Um herauszufinden, ob Mic10 so auch in lebenden Zellen arbeitet, wiederholten die Wissenschaftler ihre Versuche in Hefezellen. Diese eignen sich für derartige Untersuchungen besonders gut, da sie sich leicht manipulieren lassen und tierischen Zellen sehr ähnlich sind. Die Experimente führten die Wissenschaftler in Zusammenarbeit mit der Forschungsgruppe Struktur und Dynamik von Mitochondrien von Prof. Dr. Stefan Jakobs am Max-Planck-Institut für biophysikalische Chemie in Göttingen durch. Die Beobachtungen aus den Versuchen mit Hefezellen bestätigten die bisherigen Erkenntnisse: Mit verändertem Mic10, das sich nicht mehr mit anderen Mic10-Proteinen zusammenlagern konnte, war die Faltenbildung auch in den Hefe-Mitochondrien gestört. Nur Zellen mit normalem Mic10 hatten natürlich gefaltete Membranen.

Die neuen Erkenntnisse über Mic10 bringen nicht nur Licht ins Dunkel der Mitochondrien. Auch Membranen in anderen Zellbestandteilen zeigen besondere Formen. Meist ist nur wenig darüber bekannt, wie diese zustande kommen. Möglicherweise funktioniert die Faltung dort ähnlich wie im Fall von Mic10 in den Mitochondrien.

WEITERE INFORMATIONEN:
Universitätsmedizin Göttingen, Georg-August-Universität
Institut für Zellbiochemie
Associated Research Group
European Neuroscience Institute Göttingen (ENI-G)
Molecular Membrane Biology
Prof. Dr. Michael Meinecke, Telefon: 0551 / 39-8189
Humboldtallee 23, 37073 Göttingen
michael.meinecke@med.uni-goettingen.de

Stefan Weller | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.universitaetsmedizin-goettingen.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mit Barcodes der Zellentwicklung auf der Spur
17.08.2017 | Deutsches Krebsforschungszentrum

nachricht Magenkrebs: Auch Bakterien können Auslöser sein
17.08.2017 | Charité – Universitätsmedizin Berlin

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Scharfe Röntgenblitze aus dem Atomkern

17.08.2017 | Physik Astronomie

Fake News finden und bekämpfen

17.08.2017 | Interdisziplinäre Forschung

Effizienz steigern, Kosten senken!

17.08.2017 | Messenachrichten