Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Mitochondrien in Form gebracht werden

08.05.2015

Göttinger Wissenschaftler entdecken Protein, das die Membran in den zellulären Kraftwerken formt. Veröffentlicht in Fachzeitschrift „Cell Metabolism“.

Mitochondrien sind die Kraftwerke der Zellen. Sie produzieren einen Großteil der Energie, die Tiere und Pflanzen zum Leben benötigen. Um das leisten zu können, besitzen sie eine besondere Struktur: In ihrem Inneren befindet sich eine stark gefaltete Membran.


Membranbläschen mit (links) und ohne das Protein Mic10 (rechts). Mic10 führt zu Einstülpungen der Membran (blau gefärbt).

Foto: Meinecke

Eine Forschungsgruppe unter der Leitung von Prof. Dr. Michael Meinecke, European Neuroscience Institute Göttingen (ENI-G) und Mitglied im Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), hat nun ein Protein entdeckt, das bei dieser Faltung eine wichtige Rolle spielt. Die Forschungsergebnisse sind in der renommierten englischsprachigen Fachzeitschrift „Cell Metabolism“ er-schienen.

Originalveröffentlichung: Barbot M, Jans DC, Schulz C, Denkert N, Kroppen B, Hoppert M, Jakobs S, Meinecke M. Mic10 oligomerizes to bend mitochondrial inner membranes at cristae junctions. Cell Metabolism 21, 756-763, (2015)
doi: http://dx.doi.org/10.1016/j.cmet.2015.04.006

HINTERGRUNDINFORMATIONEN
Einige Hundert Mitochondrien gibt es durchschnittlich in jeder Zelle. Sie haben gleich mehrere Aufgaben: Sie stellen Adenosintriphosphat (ATP) her, den wichtigsten Energieträger in Zellen. Außerdem produzieren sie eine Vielzahl von Proteinen und andere chemische Verbindungen, die für die Zelle unverzichtbar sind. Auch beim programmierten Zelltod, der Apoptose, sind sie von zentraler Bedeutung. Um diese verschiedenen Funktionen erfüllen zu können, haben Mitochondrien einen besonderen Aufbau. Neben ihrer äußeren Membran besitzen sie eine weitere, innere Membran. Im Gegensatz zur äußeren ist diese innere Membran nicht glatt, sondern in Falten gelegt, die einen Großteil des Innenraums der Mitochondrien ausfüllen. Die Falten vergrößern die Membranoberfläche in den Mitochondrien. Damit steht mehr Platz für die vielen Stoffwechselvorgänge zur Verfügung, die dort ablaufen.

FORSCHUNGSERGEBNISSE IM DETAIL
Wie wichtig die besondere Gestalt der inneren Mitochondrienmembran ist, zeigt sich, wenn die Faltung gestört ist: Eine solche Veränderung löst in Zellen oft den programmierten Zelltod aus, die Zellen sterben. Bisher war wenig darüber bekannt, welche Faktoren und Mechanismen die Faltung der Membran steuern. „Wir haben herausgefunden, dass das Protein Mic10 die Form von Membranen verändern kann und wie es in den Mitochondrien die Faltenbildung steuert“, sagt Prof. Dr. Michael Meinecke, Senior-Autor der Publikation und Leiter der Forschergruppe „Molecular Membrane Biology“.

OHNE MIC10 FUNKTIONIERT DIE FALTENBILDUNG NICHT
Das Protein Mic10 ist Bestandteil des MICOS-Komplexes, der aus mehreren Proteinen zusammengesetzt ist und in Mitochondrien am Beginn der Membranfalten sitzt. „Seit Kurzem ist bekannt, dass MICOS notwendig ist, damit sich die innere Mitochondrienmembran richtig faltet“, sagt Prof. Meinecke. „Insbesondere, wenn das Mic10-Protein fehlt, ändert sich die Form der Membranfalten drastisch.“

Die Göttinger Forscher wollten herausfinden, wie Mic10 an der Faltenbildung beteiligt ist. Dafür schleusten sie das Protein zunächst im Reagenzglas in künstliche, faltenlose Membranbläschen ein. „Als wir diese Bläschen dann unter dem Mikroskop betrachteten, fanden wir röhrenförmige Einstülpungen der Membran“, sagt Mariam Barbot, Erst-Autorin der Publikation und Doktorandin in der Forschungsgruppe Molecular Membrane Biology. „Damit hatten wir den Beweis, dass Mic10 die Form von Membranen verändern kann.“

Doch wie genau schafft es Mic10, Membranen zu verformen? Die Wissenschaftler fanden heraus, dass das Protein mit einem Teil in der inneren, gefalteten Mitochondrienmembran verankert ist. Die Daten lassen vermuten, dass dieser Teil von Mic10 dabei die Form eines Keils annimmt. „Am breiten Ende des Keils würde mehr Membran verdrängt als am spitzen Ende, so dass sich in der Membran eine Kurve bildet“, sagt Prof. Meinecke. „Die Keilform könnte damit erklären, wie Mic10 zur Faltenbildung beiträgt.“

Von anderen Membransystemen weiß man, dass sich häufig mehrere identische Proteine zusammenlagern, um die Gestalt der Membran zu verändern. Die Biochemiker testeten als nächstes, ob auch Mic10 auf diese Weise funktioniert. Dafür veränderten sie das Protein so, dass es seinesgleichen nicht mehr binden konnte. Das so manipulierte Mic10 brachten die Forscher in Membranbläschen. „Tatsächlich bildeten die Bläschen keine Einstülpungen mehr“, sagt Barbot. „Die Mic10-Proteine können Membranen also nur falten, wenn sie sich zu mehreren zusammenlagern.“

VERSUCHE IN HEFEZELLEN BESTÄTIGEN ERGEBNISSE
Um herauszufinden, ob Mic10 so auch in lebenden Zellen arbeitet, wiederholten die Wissenschaftler ihre Versuche in Hefezellen. Diese eignen sich für derartige Untersuchungen besonders gut, da sie sich leicht manipulieren lassen und tierischen Zellen sehr ähnlich sind. Die Experimente führten die Wissenschaftler in Zusammenarbeit mit der Forschungsgruppe Struktur und Dynamik von Mitochondrien von Prof. Dr. Stefan Jakobs am Max-Planck-Institut für biophysikalische Chemie in Göttingen durch. Die Beobachtungen aus den Versuchen mit Hefezellen bestätigten die bisherigen Erkenntnisse: Mit verändertem Mic10, das sich nicht mehr mit anderen Mic10-Proteinen zusammenlagern konnte, war die Faltenbildung auch in den Hefe-Mitochondrien gestört. Nur Zellen mit normalem Mic10 hatten natürlich gefaltete Membranen.

Die neuen Erkenntnisse über Mic10 bringen nicht nur Licht ins Dunkel der Mitochondrien. Auch Membranen in anderen Zellbestandteilen zeigen besondere Formen. Meist ist nur wenig darüber bekannt, wie diese zustande kommen. Möglicherweise funktioniert die Faltung dort ähnlich wie im Fall von Mic10 in den Mitochondrien.

WEITERE INFORMATIONEN:
Universitätsmedizin Göttingen, Georg-August-Universität
Institut für Zellbiochemie
Associated Research Group
European Neuroscience Institute Göttingen (ENI-G)
Molecular Membrane Biology
Prof. Dr. Michael Meinecke, Telefon: 0551 / 39-8189
Humboldtallee 23, 37073 Göttingen
michael.meinecke@med.uni-goettingen.de

Stefan Weller | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.universitaetsmedizin-goettingen.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Besser lernen dank Zink?
23.03.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Raben: "Junggesellen" leben in dynamischen sozialen Gruppen
23.03.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen