Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Mitochondrien in Form gebracht werden

08.05.2015

Göttinger Wissenschaftler entdecken Protein, das die Membran in den zellulären Kraftwerken formt. Veröffentlicht in Fachzeitschrift „Cell Metabolism“.

Mitochondrien sind die Kraftwerke der Zellen. Sie produzieren einen Großteil der Energie, die Tiere und Pflanzen zum Leben benötigen. Um das leisten zu können, besitzen sie eine besondere Struktur: In ihrem Inneren befindet sich eine stark gefaltete Membran.


Membranbläschen mit (links) und ohne das Protein Mic10 (rechts). Mic10 führt zu Einstülpungen der Membran (blau gefärbt).

Foto: Meinecke

Eine Forschungsgruppe unter der Leitung von Prof. Dr. Michael Meinecke, European Neuroscience Institute Göttingen (ENI-G) und Mitglied im Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), hat nun ein Protein entdeckt, das bei dieser Faltung eine wichtige Rolle spielt. Die Forschungsergebnisse sind in der renommierten englischsprachigen Fachzeitschrift „Cell Metabolism“ er-schienen.

Originalveröffentlichung: Barbot M, Jans DC, Schulz C, Denkert N, Kroppen B, Hoppert M, Jakobs S, Meinecke M. Mic10 oligomerizes to bend mitochondrial inner membranes at cristae junctions. Cell Metabolism 21, 756-763, (2015)
doi: http://dx.doi.org/10.1016/j.cmet.2015.04.006

HINTERGRUNDINFORMATIONEN
Einige Hundert Mitochondrien gibt es durchschnittlich in jeder Zelle. Sie haben gleich mehrere Aufgaben: Sie stellen Adenosintriphosphat (ATP) her, den wichtigsten Energieträger in Zellen. Außerdem produzieren sie eine Vielzahl von Proteinen und andere chemische Verbindungen, die für die Zelle unverzichtbar sind. Auch beim programmierten Zelltod, der Apoptose, sind sie von zentraler Bedeutung. Um diese verschiedenen Funktionen erfüllen zu können, haben Mitochondrien einen besonderen Aufbau. Neben ihrer äußeren Membran besitzen sie eine weitere, innere Membran. Im Gegensatz zur äußeren ist diese innere Membran nicht glatt, sondern in Falten gelegt, die einen Großteil des Innenraums der Mitochondrien ausfüllen. Die Falten vergrößern die Membranoberfläche in den Mitochondrien. Damit steht mehr Platz für die vielen Stoffwechselvorgänge zur Verfügung, die dort ablaufen.

FORSCHUNGSERGEBNISSE IM DETAIL
Wie wichtig die besondere Gestalt der inneren Mitochondrienmembran ist, zeigt sich, wenn die Faltung gestört ist: Eine solche Veränderung löst in Zellen oft den programmierten Zelltod aus, die Zellen sterben. Bisher war wenig darüber bekannt, welche Faktoren und Mechanismen die Faltung der Membran steuern. „Wir haben herausgefunden, dass das Protein Mic10 die Form von Membranen verändern kann und wie es in den Mitochondrien die Faltenbildung steuert“, sagt Prof. Dr. Michael Meinecke, Senior-Autor der Publikation und Leiter der Forschergruppe „Molecular Membrane Biology“.

OHNE MIC10 FUNKTIONIERT DIE FALTENBILDUNG NICHT
Das Protein Mic10 ist Bestandteil des MICOS-Komplexes, der aus mehreren Proteinen zusammengesetzt ist und in Mitochondrien am Beginn der Membranfalten sitzt. „Seit Kurzem ist bekannt, dass MICOS notwendig ist, damit sich die innere Mitochondrienmembran richtig faltet“, sagt Prof. Meinecke. „Insbesondere, wenn das Mic10-Protein fehlt, ändert sich die Form der Membranfalten drastisch.“

Die Göttinger Forscher wollten herausfinden, wie Mic10 an der Faltenbildung beteiligt ist. Dafür schleusten sie das Protein zunächst im Reagenzglas in künstliche, faltenlose Membranbläschen ein. „Als wir diese Bläschen dann unter dem Mikroskop betrachteten, fanden wir röhrenförmige Einstülpungen der Membran“, sagt Mariam Barbot, Erst-Autorin der Publikation und Doktorandin in der Forschungsgruppe Molecular Membrane Biology. „Damit hatten wir den Beweis, dass Mic10 die Form von Membranen verändern kann.“

Doch wie genau schafft es Mic10, Membranen zu verformen? Die Wissenschaftler fanden heraus, dass das Protein mit einem Teil in der inneren, gefalteten Mitochondrienmembran verankert ist. Die Daten lassen vermuten, dass dieser Teil von Mic10 dabei die Form eines Keils annimmt. „Am breiten Ende des Keils würde mehr Membran verdrängt als am spitzen Ende, so dass sich in der Membran eine Kurve bildet“, sagt Prof. Meinecke. „Die Keilform könnte damit erklären, wie Mic10 zur Faltenbildung beiträgt.“

Von anderen Membransystemen weiß man, dass sich häufig mehrere identische Proteine zusammenlagern, um die Gestalt der Membran zu verändern. Die Biochemiker testeten als nächstes, ob auch Mic10 auf diese Weise funktioniert. Dafür veränderten sie das Protein so, dass es seinesgleichen nicht mehr binden konnte. Das so manipulierte Mic10 brachten die Forscher in Membranbläschen. „Tatsächlich bildeten die Bläschen keine Einstülpungen mehr“, sagt Barbot. „Die Mic10-Proteine können Membranen also nur falten, wenn sie sich zu mehreren zusammenlagern.“

VERSUCHE IN HEFEZELLEN BESTÄTIGEN ERGEBNISSE
Um herauszufinden, ob Mic10 so auch in lebenden Zellen arbeitet, wiederholten die Wissenschaftler ihre Versuche in Hefezellen. Diese eignen sich für derartige Untersuchungen besonders gut, da sie sich leicht manipulieren lassen und tierischen Zellen sehr ähnlich sind. Die Experimente führten die Wissenschaftler in Zusammenarbeit mit der Forschungsgruppe Struktur und Dynamik von Mitochondrien von Prof. Dr. Stefan Jakobs am Max-Planck-Institut für biophysikalische Chemie in Göttingen durch. Die Beobachtungen aus den Versuchen mit Hefezellen bestätigten die bisherigen Erkenntnisse: Mit verändertem Mic10, das sich nicht mehr mit anderen Mic10-Proteinen zusammenlagern konnte, war die Faltenbildung auch in den Hefe-Mitochondrien gestört. Nur Zellen mit normalem Mic10 hatten natürlich gefaltete Membranen.

Die neuen Erkenntnisse über Mic10 bringen nicht nur Licht ins Dunkel der Mitochondrien. Auch Membranen in anderen Zellbestandteilen zeigen besondere Formen. Meist ist nur wenig darüber bekannt, wie diese zustande kommen. Möglicherweise funktioniert die Faltung dort ähnlich wie im Fall von Mic10 in den Mitochondrien.

WEITERE INFORMATIONEN:
Universitätsmedizin Göttingen, Georg-August-Universität
Institut für Zellbiochemie
Associated Research Group
European Neuroscience Institute Göttingen (ENI-G)
Molecular Membrane Biology
Prof. Dr. Michael Meinecke, Telefon: 0551 / 39-8189
Humboldtallee 23, 37073 Göttingen
michael.meinecke@med.uni-goettingen.de

Stefan Weller | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.universitaetsmedizin-goettingen.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht „Molekularer Schraubstock“ ermöglicht neue chemische Reaktionen
23.02.2018 | Justus-Liebig-Universität Gießen

nachricht Neu entwickeltes Molekül bindet Stickstoff
23.02.2018 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon

Die Entwicklung von Leichtbaustrukturen ist eines der zentralen Zukunftsthemen unserer Gesellschaft. Besonders in der Luftfahrtindustrie und in anderen Transportbereichen sind Leichtbaustrukturen gefragt. Sie ermöglichen Energieeinsparungen und reduzieren den Ressourcenverbrauch bei Treibstoffen und Material. Zum Einsatz kommen dabei Verbundmaterialien in der so genannten Sandwich-Bauweise. Diese bestehen aus zwei dünnen, steifen und hochfesten Deckschichten mit einer dazwischen liegenden dicken, vergleichsweise leichten und weichen Mittelschicht, dem Sandwich-Kern.

Aramidpapier ist ein etabliertes Material für solche Sandwichkerne. Sein mechanisches Strukturversagen ist jedoch noch unzureichend erforscht: Bislang fehlten...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungsnachrichten

Good vibrations feel the force

23.02.2018 | Physik Astronomie

Empa zeigt «Tankstelle der Zukunft»

23.02.2018 | Messenachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics