Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Metalle mit dem Erbgut wechselwirken

21.03.2017

Seit einigen Jahren werden Metallverbindungen erfolgreich als Chemotherapeutika zur Bekämpfung bestimmter Krebsarten eingesetzt – am häufigsten Platinverbindungen. Bei der Suche nach neuen, wirksameren Antitumormitteln steht oft das fehlende Verständnis der zugrundeliegenden molekularen Mechanismen in diesen Metallverbindungen im Wege. Ein internationales Forschungsteam um Leticia González von der Universität Wien hat nun ein Verfahren entwickelt um die Wechselwirkung von Metallverbindungen mit dem zellulären Erbgut zu beobachten.

Im Kampf gegen Krebs werden jedes Jahr tausende von chemischen Verbindungen entwickelt und auf ihre potenzielle Wirksamkeit gegen Tumore untersucht. Findet man eine solche Wirksamkeit, dauert es meistens jedoch viele Jahre, bis ein neuer Wirkstoff als tatsächliches Medikament zugelassen wird und bei PatientInnen eingesetzt werden kann.


Computersimulation des Angriffs von Pt103 an den DNA-Doppelhelix.

Copyright: Juan J. Nogueira, Universität Wien


In der Zelle angekommen, bindet der Wirkstoff Pt103 bevorzugt an die Nukleobase Adenin, einem der Bausteine des Erbguts.

Copyright: Juan J. Nogueira, Universität Wien

Der Prozess der Zulassung dauert unter anderem deswegen so lange, weil es in der Regel sehr schwierig ist, den Weg eines Wirkstoffs innerhalb der menschlichen Zellen zu verfolgen. Infolgedessen lassen sich mögliche Nebenwirkungen nur schwer vorhersagen und müssen durch aufwändige Experimente erforscht werden.

Die Arbeitsgruppe von Leticia González von der Fakultät für Chemie der Universität Wien hat nun, in Zusammenarbeit mit der Forschungsgruppe von Jacinto Sá von der Universität Uppsala sowie weiteren internationalen Partnern, ein Protokoll entwickelt, mit dem sich die Wechselwirkung metallhaltiger Medikamente mit Biomolekülen innerhalb eines Organismus mit hoher Genauigkeit verfolgen lässt.

"In einem ersten Schritt haben wir mit Hilfe speziell erzeugter Röntgenstrahlen jenen Ort bestimmt, an dem das Medikament innerhalb der Zelle andockt", erklärt González. In einem zweiten Schritt haben die ForscherInnen mittels aufwändiger Computersimulationen, welche teilweise am Supercomputer "Vienna Scientific Cluster" durchgeführt wurden, den Grund für die Bevorzugung dieses bestimmten Ortes aufgeklärt.

Den WissenschafterInnen ist es bereits gelungen, dieses Protokoll erstmals bei einem Medikament anzuwenden, dessen Antitumorwirkung bekannt, der genaue Wirkmechanismus aber noch nicht geklärt ist. Von der Verbindung "Pt103" aus der Familie der platinhaltigen Wirkstoffe ist bereits aus vorangegangenen Studien eine Antitumorwirkung bekannt. Bisher vermuteten ForscherInnen, dass die Substanz mit dem Erbgut der Zelle wechselwirkt und dadurch die Weitergabe des genetischen Codes während der Zellteilung stört.

"Wir konnten zeigen, dass der Wirkstoff an eine ganz spezielle, für uns unerwartete Stelle andockt und gleichzeitig klären, warum genau diese spezifischen Stellen angegriffen werden", so Juan J. Nogueira, Postdoc in der Gruppe von González und Co-Autor der Studie. Dank dieser Erkenntnis lässt sich die Funktionalität der Chemotherapeutika besser verstehen und kann zur Entwicklung neuer, effizienterer Wirkstoffe beitragen.

Publikation in "Journal of Physical Chemistry Letters"

"Direct Determination of Metal Complexes Interaction with DNA by Atomic Telemetry and Multiscale Molecular Dynamics." Joanna Czapla-Masztafiak, Juan J. Nogueira, Ewelina Lipiec, Wojciech M. Kwiatek, Bayden R. Wood, Glen B. Deacon, Yves Kayser, Daniel L. A. Fernandes, Mariia V. Pavliuk, Jakub Szlachetko, Leticia González, and Jacinto Sá
The Journal of Physical Chemistry Letters 2017, 8, 805-811.
DOI: 10.1021/acs.jpclett.7b00070

Stephan Brodicky | Universität Wien
Weitere Informationen:
http://www.univie.ac.at/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wasserbewegung als Hinweis auf den Zustand von Tumoren
19.04.2018 | Gesellschaft Deutscher Chemiker e.V.

nachricht Verbesserte Stabilität von Kunststoff-Leuchtdioden
19.04.2018 | Max-Planck-Institut für Polymerforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Wie schwingt ein Molekül, wenn es berührt wird?

Physiker aus Regensburg, Kanazawa und Kalmar untersuchen Einfluss eines äußeren Kraftfeldes

Physiker der Universität Regensburg (Deutschland), der Kanazawa University (Japan) und der Linnaeus University in Kalmar (Schweden) haben den Einfluss eines...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Nachhaltige und innovative Lösungen

19.04.2018 | HANNOVER MESSE

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungsnachrichten

Auf dem Weg zur optischen Kernuhr

19.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics