Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Herzmuskelzellen ihre Elastizität regulieren

19.03.2014

Warum das Herz nach Stress, etwa nach einem Herzinfarkt, dauerhaft an Pumpkraft verliert, haben Mediziner der Ruhr-Universität Bochum herausgefunden.

Sie entdeckten bislang unbekannte Mechanismen, die die Elastizität des Riesenproteins Titin und somit die Steife des Herzmuskels regulieren. Die Ergebnisse beschreibt das Team um Prof. Dr. Wolfgang Linke mit Kolleginnen und Kollegen aus den USA und aus Düsseldorf in zwei Artikeln in den Zeitschriften „Cell“ und „Journal of Cell Biology“.

Herzversagen legt sensible Proteinbereiche im Titin frei

Titin, das größte Protein im menschlichen Körper, verhält sich wie eine Feder, die die Muskelzelle spannt oder erschlaffen lässt. Seine Federregion besitzt bestimmte Proteineinheiten, die sogenannten Immunglobulin-Domänen, die wie an einer Perlenschnur aufgereiht sind. Unter Stressbedingungen, zum Beispiel bei akutem Herzversagen, wird die Federregion übermäßig stark gedehnt; die Immunglobulin-Domänen entfalten sich.

Die Wissenschaftler fanden heraus, dass dadurch Proteinbereiche offengelegt werden, die besonders anfällig für oxidative Modifikation sind. Das heißt, bestimmte Moleküle binden an die nun freigelegte Aminosäure Cystein, wodurch die entfalteten Immunglobulin-Domänen nicht zu ihrer ursprünglichen Struktur zurückkehren können.

Dadurch sinkt die Steife der Herzwand, und Titin kann seine Aufgabe als Sensor der mechanischen Spannung der Herzmuskelzellen nicht mehr vollständig wahrnehmen. Das schränkt die Pumpfunktion des Herzens ein.

Kleine Proteine schützen Titin vor Stresseffekten

In einer zweiten Arbeit zeigten Linke und seine Kollegen, dass die Herzmuskelzellen aber auch Mechanismen besitzen, um die elastische Region des Titins vor Stresseffekten zu schützen. Stress bedeutet dabei Überdehnung oder chemische Bedingungen, die für die Proteine schädlich sind, etwa ein gestörter Säure-Base-Haushalt. Üblicherweise klumpen Immunglobulin-Domänen unter solchen Stressbedingungen zusammen, was die Funktion des Proteins schädigen würde.

Die Forscher zeigten jedoch, dass kleine Proteine zu den entfalteten Titinbereichen wandern und verhindern, dass die „Perlen“ der Federregion verklumpen. Das wirkt einer krankhaften Veränderung der Titinelastizität bei Herzinfarkten oder chronischer Herzschwäche entgegen. Bei den schützenden Proteinen handelt es sich um die Hitzeschockproteine alpha-B-Crystallin und HSP27.

Titelaufnahmen

J. Alegre-Cebollada, P. Kosuri, D. Giganti, E. Eckels, J.A. Rivas-Pardo, N. Hamdani, C.M. Warren, R.J. Solaro, W.A. Linke, J.M. Fernández (2014): S-glutathionylation of cryptic cysteines enhances titin elasticity by blocking protein folding, Cell, DOI: 10.1016/j.cell.2014.01.056
S. Kötter, A. Unger, N. Hamdani, P. Lang, M. Vorgerd, L. Nagel-Steger, W.A. Linke (2014): Human myocytes are protected from titin aggregation-induced stiffening by small heat shock proteins, The Journal of Cell Biology, DOI: 10.1083/jcb.201306077

Weitere Informationen

Prof. Dr. Wolfgang Linke, Abteilung für Kardiovaskuläre Physiologie, Institut für Physiologie, Medizinische Fakultät der Ruhr-Universität, 44780 Bochum, Tel. 0234/32-29100, E-Mail: wolfgang.linke@rub.de

Dr. Julia Weiler | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.rub.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht In Hochleistungs-Mais sind mehr Gene aktiv
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Warum es für Pflanzen gut sein kann auf Sex zu verzichten
19.01.2018 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal vereinbart mit dem Betriebsrat von RWG Sozialplan - Zukunftsorientierter Dialog führt zur Einigkeit

19.01.2018 | Unternehmensmeldung

Open Science auf offener See

19.01.2018 | Geowissenschaften

Original bleibt Original - Neues Produktschutzverfahren für KFZ-Kennzeichenschilder

19.01.2018 | Informationstechnologie