Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie giftige Proteinklumpen entstehen

02.03.2016

Egal ob bei Alzheimer oder der Huntingtonkrankheit – Proteinverklumpungen gelten als eine Ursache für das Sterben von Nervenzellen. Wie jetzt Forscher vom Max-Planck-Institut für Biochemie in Nature berichten, haben sie einen zellulären Mechanismus entschlüsselt, der das Entstehen der Verklumpungen erklärt. Verloren gegangene Stoppsignale bei der Proteinproduktion führen fälschlicherweise zu langen Lysinketten am Ende der Proteine. So wird das Ribosom, die Proteinfabrik, verstopft. Gesunde Zellen erkennen blockierte Ribosome und bauen nutzlose Proteine zügig ab. Funktioniert die notwendige Qualitätskontrolle nicht, reichern sich fehlerhafte Proteine an und verklumpen zu toxischen Aggregaten.

Um neurodegenerative Krankheiten in Zukunft behandeln zu können, untersucht Forscher Ulrich Hartl, Leiter der Abteilung Zelluläre Biochemie am Max-Planck-Institut für Biochemie, zusammen mit seinem Team seit vielen Jahren die zellulären Ursachen für das Sterben von Nervenzellen.


Ist die Proteinbauanleitung, mRNA, defekt, werden in den Ribosomen nutzlose Proteine hergestellt. Ist die Qualitätskontrolle nicht aktiv, reichern sich diese Proteine an und verklumpen zu Aggregaten.

Monika Krause © MPI für Biochemie

Als eine entscheidende Ursache gelten Proteinverklumpungen – Aggregate aus fehlgefalteten Proteinen. „Wir konnten zeigen, dass die Bildung von Aggregaten begünstigt wird, wenn es Fehler in der Proteinbauanleitung gibt und diese durch die interne Qualitätskontrolle nicht erkannt werden“, erklärt Young-Jun Choe, Erstautoren der Studie neben Sae-Hun Park.

In jeder Zelle übernehmen Proteine, wie kleine, molekulare Maschinen, lebenswichtige Funktionen. „Die DNA kann man sich wie eine riesige Bibliothek an Proteinbauanleitungen vorstellen, die sich im Zellkern befinden. Für die Herstellung eines Proteins wird zunächst eine Kopie der Anleitung hergestellt, die mRNA. Diese wird dann aus dem Zellkern an die Ribosomen geleitet die aus Aminosäuren das Protein aufbauen“, so Choe.

Die mRNA enthält ein Startsignal, die Information des Proteinaufbaus, ein Stoppsignal und am Ende einen sogenannten Poly-A-Schwanz. Wird der Bauplan beschädigt, beispielsweise durch die Einwirkung von Strahlung oder erbgutverändernden Substanzen, kann es zum Verlust dieses Stoppsignals kommen. Dann kann bei der Proteinherstellung in den Ribosomen das fertige Protein nicht freigesetzt werden. Stattdessen wird der Poly-A-Schwanz als Bauanleitung interpretiert, wodurch zusätzlich Aminosäuren anhängt werden. Die dadurch positiv geladene Lysinkette blockiert die Proteinfabrik und die Herstellung kommt zum Erliegen.

In gesunden Zellen gibt es bei der Proteinherstellung eine sehr effiziente Qualitätskontrolle. Fehlgefaltete und nutzlose Proteine werden markiert, repariert oder zügig abgebaut. Ein wichtiger Bestandteil der Qualitätskontrolle ist Ltn1p. „Ist Ltn1p in krankhaft veränderten Zellen nicht aktiv oder fehlen andere Bestandteile der Qualitätskontrolle, reichern sich fehlerhafte Proteine im Zellinneren an, sie verklumpen“, sagt Park.

Welche fatalen Folgen das Versagen der Qualitätskontrolle haben kann, konnte bereits im Mausmodell gezeigt werden. Tiere mit einer entsprechenden Mutation zeigen Symptome von fortschreitender Neurodegeneration und eingeschränkter Bewegungsfähigkeit.

Entstandene Proteinaggregate haben klebrige Eigenschaften und wirken wie ein Kristallisationskeim. Sie binden schließlich auch fehlerfrei funktionierende und für die Zelle lebensnotwendige Proteine an sich. Dies hat zur Folge, dass die Zelle aus dem Gleichgewicht gerät und auf lange Sicht Schaden erleidet. Interessanterweise scheint die Zelle dabei einem bereits bekannten Muster zu folgen, sagt Ulrich Hartl. „Dass die Proteinaggregate auch essenzielle, fehlerfreie Proteine an sich binden, kennen wir bereits aus früheren Studien mit dem Protein Huntingtin, das von selbst aggregiert und im Menschen für die Entstehung der neurodegenerativen Krankheit Chorea Huntington verantwortlich ist.“

„Mit unseren Ergebnissen zeigen wir nicht nur einen möglichen Mechanismus zur Entstehung von neurodegenerativen Krankheiten auf, sondern haben zudem ein weiteres Beispiel dafür gefunden, auf welche Weise Proteine zu Aggregaten verklumpen und der Zelle schaden können. Dies bestätigt uns in unserer Vermutung, dass die Unterdrückung des Aggregationsprozesses ein vielversprechender Therapieansatz für eine Vielzahl von heute noch unheilbaren neurodegenerativen Krankheiten darstellt“, fasst Hartl die Ergebnisse der Studie zusammen.

Originalpublikation:
Y.-J. Choe & S.-H. Park, T. Hassemer, R. Körner, L. Vincenz-Donnelly, M. Hayer-Hartl & F.-U. Hartl: Failure of RQC machinery causes protein aggregation and proteotoxic stress. Nature, Februar 2016
DOI: 10.1038/nature16973.

Kontakt:
Prof. Dr. F.-Ulrich Hartl
Abteilung für Zelluläre Biochemie
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
E-Mail: uhartl@biochem.mpg.de
www.biochem.mpg.de/hartl

Dr. Christiane Menzfeld
Öffentlichkeitsarbeit
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
Tel. +49 89 8578-2824
E-Mail: pr@biochem.mpg.de
www.biochem.mpg.de

Weitere Informationen:

http://www.biochem.mpg.de - Webseite des Max-Planck-Institutes für Biochemie
http://www.biochem.mpg.de/hartl - Webseite der Forschungsabteilung "Zelluläre Biochemie" (F.-Ulrich Hartl)

Dr. Christiane Menzfeld | Max-Planck-Institut für Biochemie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

nachricht Schimpansen belohnen Gefälligkeiten
23.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften