Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie giftige Proteinklumpen entstehen

02.03.2016

Egal ob bei Alzheimer oder der Huntingtonkrankheit – Proteinverklumpungen gelten als eine Ursache für das Sterben von Nervenzellen. Wie jetzt Forscher vom Max-Planck-Institut für Biochemie in Nature berichten, haben sie einen zellulären Mechanismus entschlüsselt, der das Entstehen der Verklumpungen erklärt. Verloren gegangene Stoppsignale bei der Proteinproduktion führen fälschlicherweise zu langen Lysinketten am Ende der Proteine. So wird das Ribosom, die Proteinfabrik, verstopft. Gesunde Zellen erkennen blockierte Ribosome und bauen nutzlose Proteine zügig ab. Funktioniert die notwendige Qualitätskontrolle nicht, reichern sich fehlerhafte Proteine an und verklumpen zu toxischen Aggregaten.

Um neurodegenerative Krankheiten in Zukunft behandeln zu können, untersucht Forscher Ulrich Hartl, Leiter der Abteilung Zelluläre Biochemie am Max-Planck-Institut für Biochemie, zusammen mit seinem Team seit vielen Jahren die zellulären Ursachen für das Sterben von Nervenzellen.


Ist die Proteinbauanleitung, mRNA, defekt, werden in den Ribosomen nutzlose Proteine hergestellt. Ist die Qualitätskontrolle nicht aktiv, reichern sich diese Proteine an und verklumpen zu Aggregaten.

Monika Krause © MPI für Biochemie

Als eine entscheidende Ursache gelten Proteinverklumpungen – Aggregate aus fehlgefalteten Proteinen. „Wir konnten zeigen, dass die Bildung von Aggregaten begünstigt wird, wenn es Fehler in der Proteinbauanleitung gibt und diese durch die interne Qualitätskontrolle nicht erkannt werden“, erklärt Young-Jun Choe, Erstautoren der Studie neben Sae-Hun Park.

In jeder Zelle übernehmen Proteine, wie kleine, molekulare Maschinen, lebenswichtige Funktionen. „Die DNA kann man sich wie eine riesige Bibliothek an Proteinbauanleitungen vorstellen, die sich im Zellkern befinden. Für die Herstellung eines Proteins wird zunächst eine Kopie der Anleitung hergestellt, die mRNA. Diese wird dann aus dem Zellkern an die Ribosomen geleitet die aus Aminosäuren das Protein aufbauen“, so Choe.

Die mRNA enthält ein Startsignal, die Information des Proteinaufbaus, ein Stoppsignal und am Ende einen sogenannten Poly-A-Schwanz. Wird der Bauplan beschädigt, beispielsweise durch die Einwirkung von Strahlung oder erbgutverändernden Substanzen, kann es zum Verlust dieses Stoppsignals kommen. Dann kann bei der Proteinherstellung in den Ribosomen das fertige Protein nicht freigesetzt werden. Stattdessen wird der Poly-A-Schwanz als Bauanleitung interpretiert, wodurch zusätzlich Aminosäuren anhängt werden. Die dadurch positiv geladene Lysinkette blockiert die Proteinfabrik und die Herstellung kommt zum Erliegen.

In gesunden Zellen gibt es bei der Proteinherstellung eine sehr effiziente Qualitätskontrolle. Fehlgefaltete und nutzlose Proteine werden markiert, repariert oder zügig abgebaut. Ein wichtiger Bestandteil der Qualitätskontrolle ist Ltn1p. „Ist Ltn1p in krankhaft veränderten Zellen nicht aktiv oder fehlen andere Bestandteile der Qualitätskontrolle, reichern sich fehlerhafte Proteine im Zellinneren an, sie verklumpen“, sagt Park.

Welche fatalen Folgen das Versagen der Qualitätskontrolle haben kann, konnte bereits im Mausmodell gezeigt werden. Tiere mit einer entsprechenden Mutation zeigen Symptome von fortschreitender Neurodegeneration und eingeschränkter Bewegungsfähigkeit.

Entstandene Proteinaggregate haben klebrige Eigenschaften und wirken wie ein Kristallisationskeim. Sie binden schließlich auch fehlerfrei funktionierende und für die Zelle lebensnotwendige Proteine an sich. Dies hat zur Folge, dass die Zelle aus dem Gleichgewicht gerät und auf lange Sicht Schaden erleidet. Interessanterweise scheint die Zelle dabei einem bereits bekannten Muster zu folgen, sagt Ulrich Hartl. „Dass die Proteinaggregate auch essenzielle, fehlerfreie Proteine an sich binden, kennen wir bereits aus früheren Studien mit dem Protein Huntingtin, das von selbst aggregiert und im Menschen für die Entstehung der neurodegenerativen Krankheit Chorea Huntington verantwortlich ist.“

„Mit unseren Ergebnissen zeigen wir nicht nur einen möglichen Mechanismus zur Entstehung von neurodegenerativen Krankheiten auf, sondern haben zudem ein weiteres Beispiel dafür gefunden, auf welche Weise Proteine zu Aggregaten verklumpen und der Zelle schaden können. Dies bestätigt uns in unserer Vermutung, dass die Unterdrückung des Aggregationsprozesses ein vielversprechender Therapieansatz für eine Vielzahl von heute noch unheilbaren neurodegenerativen Krankheiten darstellt“, fasst Hartl die Ergebnisse der Studie zusammen.

Originalpublikation:
Y.-J. Choe & S.-H. Park, T. Hassemer, R. Körner, L. Vincenz-Donnelly, M. Hayer-Hartl & F.-U. Hartl: Failure of RQC machinery causes protein aggregation and proteotoxic stress. Nature, Februar 2016
DOI: 10.1038/nature16973.

Kontakt:
Prof. Dr. F.-Ulrich Hartl
Abteilung für Zelluläre Biochemie
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
E-Mail: uhartl@biochem.mpg.de
www.biochem.mpg.de/hartl

Dr. Christiane Menzfeld
Öffentlichkeitsarbeit
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
Tel. +49 89 8578-2824
E-Mail: pr@biochem.mpg.de
www.biochem.mpg.de

Weitere Informationen:

http://www.biochem.mpg.de - Webseite des Max-Planck-Institutes für Biochemie
http://www.biochem.mpg.de/hartl - Webseite der Forschungsabteilung "Zelluläre Biochemie" (F.-Ulrich Hartl)

Dr. Christiane Menzfeld | Max-Planck-Institut für Biochemie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Bakterien aus dem Blut «ziehen»
07.12.2016 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht HIV: Spur führt ins Recycling-System der Zelle
07.12.2016 | Forschungszentrum Jülich

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Das Universum enthält weniger Materie als gedacht

07.12.2016 | Physik Astronomie

Partnerschaft auf Abstand: tiefgekühlte Helium-Moleküle

07.12.2016 | Physik Astronomie

Bakterien aus dem Blut «ziehen»

07.12.2016 | Biowissenschaften Chemie