Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Gene Hirnstrukturen beeinflussen

22.01.2015

Forscherkonsortium legt einzigartige Kartierung des Denkorgans vor. Das Uniklinikum Dresden ist beteiligt

Das Gehirn ist ein komplexes Gebilde, dessen Bauplan im Erbgut angelegt ist. Wie die Gene die Ausformung des Gehirns beeinflussen, ist noch weitgehend unbekannt. Ein internationales Forscherkonsortium hat nun beim Menschen fünf Verdachtsgene entdeckt, die mit der Größe verschiedener Gehirnregionen zusammenhängen. Die Wissenschaftler hoffen, mit den Ergebnissen die molekularen Grundlagen psychiatrischer Erkrankungen besser zu verstehen. Die Studie wurde am 21. Januar 2015 im renommierten Fachjournal „Nature“ veröffentlicht.

Das internationale Forscherkonsortium ENIGMA (Enhancing Neuro Imaging Genetics through Meta-Analysis) hat eine großangelegte Untersuchung durchgeführt, wie genetische Varianten die Ausformung verschiedener Gehirnregionen beeinflussen.

Die Wissenschaftler werteten die Hirnscan-Aufnahmen von insgesamt 30.717 Menschen aus, die aus 50 Kohortenstudien weltweit und unter anderem auch aus dem BMBF-geförderten Integrierten Genomforschungsnetzwerk MooDS stammen. Die Bilder dienten als Grundlage zur Bestimmung des Volumens der Schädelhöhle und sieben verschiedener Gehirnregionen.

Welche Gene führen dazu, dass die Größe der Gehirnstrukturen von Mensch zu Mensch variiert? Um diese Frage zu beantworten, glichen die Forscher die Hirnscanner-Daten mit Erbgutanalysen ab und fanden dabei insgesamt fünf neue genetische Varianten in den Genregionen DLG2 (auf Chromosom 11 gelegen), FAT3 (Chromosom 11), KTN1 (Chromosom 14), DCC (Chromosom 18) und BCL2L1 (Chromosom 20), die mit dem Volumen der Hirnstrukturen „Putamen“ und „Nucleus caudatus“ zusammenhängen.

Diese Hirnstrukturen gehören zu den sogenannten Kerngebieten des Großhirns, denen zentrale Umschaltfunktionen von Nervenbahnen im Gehirn zukommen. Wie die jetzt identifizierten Gene ihren Einfluss auf die Größe der Gehirnstrukturen auf der biologischen Ebene im Detail entfalten, ist noch nicht bekannt. Es gibt aber Hinweise, dass im wachsenden Gehirn zum Beispiel die Wanderung von Nervenzellen (DCC) oder der programmierte Zelltod unreifer Neuronen (BCL2L1) beeinflusst werden.

Rolle des KTN1-Gens

Unter allen untersuchten Genen zeigte das KTN1 den stärksten Effekt. Bisher war über die Rolle dieses Gens in der Entwicklung von Nervenzellen kaum etwas bekannt. Weitergehende Untersuchungen konnten zeigen, dass die genetische Variante das Ablesen des Gens beeinflusst und damit höchstwahrscheinlich auch die Menge des gebildeten Proteins.

„Ein besseres Verständnis für die Ursachen von Hirnveränderungen bei schweren psychiatrischen Erkrankungen kann Ansatzpunkte für neue Therapiemöglichkeiten aufzeigen. Die Forschung zu genetischen Zusammenhängen und Reduktionen von grauer Substanz bei Schizophrenie ist hier wegweisend und bietet in Zukunft vielleicht auch die Möglichkeit schon frühzeitig, das heißt im Kindes- und Jugendalter, zu intervenieren“, erklärt Prof. Dr. Stefan Ehrlich, der an der Klinik und Poliklinik für Kinder- und Jugendpsychiatrie und –psychotherapie des Universitätsklinikums Carl Gustav Carus in Dresden den Forschungsbereich Angewandte Entwicklungsneurowissenschaften leitet und zudem als Koordinator des MCIC-Netzwerkes tätig ist.

Beteiligte Institutionen in Deutschland

An der Publikation im renommierten Fachjournal „Nature“ waren fast 300 Wissenschaftler beteiligt. Korrespondenzautoren sind Prof. Dr. Paul M. Thompson von der Keck School of Medicine of the University of Southern California (USA) und Dr. Sarah E. Medland vom QIMR Berghofer Medical Research Institute in Brisbane (Australien). Aus Deutschland wirkten folgende Institutionen mit: Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Rostock/Greifswald, Universitätsmedizin Greifswald, Zentralinstitut für Seelische Gesundheit Mannheim, Klinik und Poliklinik für Kinder- und Jugendpsychiatrie der Technischen Universität Dresden, Klinik für Psychiatrie und Psychotherapie der Universitätsmedizin Göttingen, Max-Planck-Institut für Psychiatrie München, Institut für Humangenetik des Universitätsklinikums Bonn, Institut für Neurowissenschaften und Medizin (INM-1) des Forschungszentrums Jülich, Klinik für Psychiatrie und Psychotherapie der Charité Universitätsmedizin Berlin, Ludwig-Maximilians-Universität München, Life & Brain Zentrum Bonn, Psychiatrie und Psychotherapie des UniversitätsKlinikums Heidelberg, Munich Cluster for Systems Neurology (SyNergy) und HELIOS Hanseklinikum Stralsund.

Publikation: Common genetic variants influence human subcortical brain structures, Nature, DOI: 10.1038/nature14101

Informationen für Journalisten:
Universitätsklinikum Carl Gustav Carus Dresden
Klinik für Kinder- und Jugendpsychiatrie und -psychotherapie
Sektion Angewandte Entwicklungsneurowissenschaften
Prof. Stefan Ehrlich, Geschäftsführender Oberarzt der Klinik
Tel.: +49 (0)351 458-2244
Fax: +49 (0)351 458-5754
E-Mail: stefan.ehrlich@uniklinikum-dresden.de

Weitere Informationen:

http://www.uniklinikum-dresden.de

Kim-Astrid Magister | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wegbereiter für Vitamin A in Reis
21.07.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Pharmakologie - Im Strom der Bläschen
21.07.2017 | Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblicke unter die Oberfläche des Mars

21.07.2017 | Geowissenschaften

Wegbereiter für Vitamin A in Reis

21.07.2017 | Biowissenschaften Chemie

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungsnachrichten