Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Gene Hirnstrukturen beeinflussen

22.01.2015

Forscherkonsortium legt einzigartige Kartierung des Denkorgans vor. Das Uniklinikum Dresden ist beteiligt

Das Gehirn ist ein komplexes Gebilde, dessen Bauplan im Erbgut angelegt ist. Wie die Gene die Ausformung des Gehirns beeinflussen, ist noch weitgehend unbekannt. Ein internationales Forscherkonsortium hat nun beim Menschen fünf Verdachtsgene entdeckt, die mit der Größe verschiedener Gehirnregionen zusammenhängen. Die Wissenschaftler hoffen, mit den Ergebnissen die molekularen Grundlagen psychiatrischer Erkrankungen besser zu verstehen. Die Studie wurde am 21. Januar 2015 im renommierten Fachjournal „Nature“ veröffentlicht.

Das internationale Forscherkonsortium ENIGMA (Enhancing Neuro Imaging Genetics through Meta-Analysis) hat eine großangelegte Untersuchung durchgeführt, wie genetische Varianten die Ausformung verschiedener Gehirnregionen beeinflussen.

Die Wissenschaftler werteten die Hirnscan-Aufnahmen von insgesamt 30.717 Menschen aus, die aus 50 Kohortenstudien weltweit und unter anderem auch aus dem BMBF-geförderten Integrierten Genomforschungsnetzwerk MooDS stammen. Die Bilder dienten als Grundlage zur Bestimmung des Volumens der Schädelhöhle und sieben verschiedener Gehirnregionen.

Welche Gene führen dazu, dass die Größe der Gehirnstrukturen von Mensch zu Mensch variiert? Um diese Frage zu beantworten, glichen die Forscher die Hirnscanner-Daten mit Erbgutanalysen ab und fanden dabei insgesamt fünf neue genetische Varianten in den Genregionen DLG2 (auf Chromosom 11 gelegen), FAT3 (Chromosom 11), KTN1 (Chromosom 14), DCC (Chromosom 18) und BCL2L1 (Chromosom 20), die mit dem Volumen der Hirnstrukturen „Putamen“ und „Nucleus caudatus“ zusammenhängen.

Diese Hirnstrukturen gehören zu den sogenannten Kerngebieten des Großhirns, denen zentrale Umschaltfunktionen von Nervenbahnen im Gehirn zukommen. Wie die jetzt identifizierten Gene ihren Einfluss auf die Größe der Gehirnstrukturen auf der biologischen Ebene im Detail entfalten, ist noch nicht bekannt. Es gibt aber Hinweise, dass im wachsenden Gehirn zum Beispiel die Wanderung von Nervenzellen (DCC) oder der programmierte Zelltod unreifer Neuronen (BCL2L1) beeinflusst werden.

Rolle des KTN1-Gens

Unter allen untersuchten Genen zeigte das KTN1 den stärksten Effekt. Bisher war über die Rolle dieses Gens in der Entwicklung von Nervenzellen kaum etwas bekannt. Weitergehende Untersuchungen konnten zeigen, dass die genetische Variante das Ablesen des Gens beeinflusst und damit höchstwahrscheinlich auch die Menge des gebildeten Proteins.

„Ein besseres Verständnis für die Ursachen von Hirnveränderungen bei schweren psychiatrischen Erkrankungen kann Ansatzpunkte für neue Therapiemöglichkeiten aufzeigen. Die Forschung zu genetischen Zusammenhängen und Reduktionen von grauer Substanz bei Schizophrenie ist hier wegweisend und bietet in Zukunft vielleicht auch die Möglichkeit schon frühzeitig, das heißt im Kindes- und Jugendalter, zu intervenieren“, erklärt Prof. Dr. Stefan Ehrlich, der an der Klinik und Poliklinik für Kinder- und Jugendpsychiatrie und –psychotherapie des Universitätsklinikums Carl Gustav Carus in Dresden den Forschungsbereich Angewandte Entwicklungsneurowissenschaften leitet und zudem als Koordinator des MCIC-Netzwerkes tätig ist.

Beteiligte Institutionen in Deutschland

An der Publikation im renommierten Fachjournal „Nature“ waren fast 300 Wissenschaftler beteiligt. Korrespondenzautoren sind Prof. Dr. Paul M. Thompson von der Keck School of Medicine of the University of Southern California (USA) und Dr. Sarah E. Medland vom QIMR Berghofer Medical Research Institute in Brisbane (Australien). Aus Deutschland wirkten folgende Institutionen mit: Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Rostock/Greifswald, Universitätsmedizin Greifswald, Zentralinstitut für Seelische Gesundheit Mannheim, Klinik und Poliklinik für Kinder- und Jugendpsychiatrie der Technischen Universität Dresden, Klinik für Psychiatrie und Psychotherapie der Universitätsmedizin Göttingen, Max-Planck-Institut für Psychiatrie München, Institut für Humangenetik des Universitätsklinikums Bonn, Institut für Neurowissenschaften und Medizin (INM-1) des Forschungszentrums Jülich, Klinik für Psychiatrie und Psychotherapie der Charité Universitätsmedizin Berlin, Ludwig-Maximilians-Universität München, Life & Brain Zentrum Bonn, Psychiatrie und Psychotherapie des UniversitätsKlinikums Heidelberg, Munich Cluster for Systems Neurology (SyNergy) und HELIOS Hanseklinikum Stralsund.

Publikation: Common genetic variants influence human subcortical brain structures, Nature, DOI: 10.1038/nature14101

Informationen für Journalisten:
Universitätsklinikum Carl Gustav Carus Dresden
Klinik für Kinder- und Jugendpsychiatrie und -psychotherapie
Sektion Angewandte Entwicklungsneurowissenschaften
Prof. Stefan Ehrlich, Geschäftsführender Oberarzt der Klinik
Tel.: +49 (0)351 458-2244
Fax: +49 (0)351 458-5754
E-Mail: stefan.ehrlich@uniklinikum-dresden.de

Weitere Informationen:

http://www.uniklinikum-dresden.de

Kim-Astrid Magister | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Kupferhydroxid-Nanopartikel schützen vor toxischen Sauerstoffradikalen im Zigarettenrauch
30.03.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung
30.03.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atome rennen sehen - Phasenübergang live beobachtet

Ein Wimpernschlag ist unendlich lang dagegen – innerhalb von 350 Billiardsteln einer Sekunde arrangieren sich die Atome neu. Das renommierte Fachmagazin Nature berichtet in seiner aktuellen Ausgabe*: Wissenschaftler vom Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) haben die Bewegungen eines eindimensionalen Materials erstmals live verfolgen können. Dazu arbeiteten sie mit Kollegen der Universität Paderborn zusammen. Die Forscher fanden heraus, dass die Beschleunigung der Atome jeden Porsche stehenlässt.

Egal wie klein sie sind, die uns im Alltag umgebenden Dinge sind dreidimensional: Salzkristalle, Pollen, Staub. Selbst Alufolie hat eine gewisse Dicke. Das...

Im Focus: Kleinstmagnete für zukünftige Datenspeicher

Ein internationales Forscherteam unter der Leitung von Chemikern der ETH Zürich hat eine neue Methode entwickelt, um eine Oberfläche mit einzelnen magnetisierbaren Atomen zu bestücken. Interessant ist dies insbesondere für die Entwicklung neuartiger winziger Datenträger.

Die Idee ist faszinierend: Auf kleinstem Platz könnten riesige Datenmengen gespeichert werden, wenn man für eine Informationseinheit (in der binären...

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung

30.03.2017 | Biowissenschaften Chemie

Zuckerrübenschnitzel: der neue Rohstoff für Werkstoffe?

30.03.2017 | Materialwissenschaften

Integrating Light – Your Partner LZH: Das LZH auf der Hannover Messe 2017

30.03.2017 | HANNOVER MESSE