Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie funktionieren unsere Muskeln?

27.11.2014

Utl.: ForscherInnen der MFPL liefern wichtige neue Einblicke in Muskelprotein

ForscherInnen um Kristina Djinović-Carugo von den Max F. Perutz Laboratories (MFPL) der Universität Wien und der Medizinischen Universität Wien haben erstmals die molekulare Struktur und Steuerung des lebenswichtigen Muskelproteins α-Actinin aufgeklärt. Die neue Studie erlaubt nie dagewesene Einblicke in die Funktionsweise des Proteins und seine Rolle bei Muskelerkrankungen. Die in Zusammenarbeit mit dem King’s College London (KCL) gewonnen Erkenntnisse, die zu verbesserten Behandlungsmöglichkeiten beitragen können, erscheinen im hochkarätigen Fachjournal Cell.


Oberflächenstruktur des α-Actinin-Dimers vor dem Hintergrund einer elektronenmikroskopischen Aufnahme von Muskel-Sarkomeren.

Copyright: Mathias Gautel und Andrea Ghisleni, KCL, Nikos Pinotsis und Kristina Djinović-Carugo, MFPL


Detailstruktur des α-Actinin Dimers. Der Kopf ist rot hervorgehoben, die Halsregion ist gelb eingefärbt, und die L-förmigen Domänen sind in lila und blau dargestellt.

Copyright: Kristina Djinović-Carugo, MFPL

Um Bewegungen jeglicher Art ausführen zu können, sind die meisten Tiere auf Muskeln angewiesen. Sei es um zu essen, sich zu verteidigen oder zu fliehen. Die kleinste funktionelle Einheit eines Muskels ist das Sarkomer, von denen Hunderte hintereinander angeordnet sind und so eine Muskelfaser bilden.

"Sarkomere bestehen zum größten Teil aus Proteinsträngen, sogenannten Filamenten, von Actin und Myosin. Damit ein Muskel sich verkürzen – also kontrahieren – kann, müssen sich diese Filamente gegeneinander verschieben können und in festen Ebenen, den Z-Scheiben, verankert sein. Z-Scheiben bestehen zum Großteil aus dem Protein α-Actinin, welches auch das Protein Titin verankert. Titin ist dafür verantwortlich, dass die Actin- und Myosinfilamente eines Sarkomers korrekt angeordnet sind, und stellt nach getaner Muskelarbeit die ursprüngliche Länge des Sarkomers wieder her", erklärt Strukturbiologin Kristina Djinović-Carugo.

Wichtige Rolle in Herz- und Muskelerkrankungen

α-Actinin ist ein lebenswichtiges Protein – Embryonen, die es nicht herstellen können, sterben. Wird α-Actinin zwar gebildet, funktioniert es aber nicht richtig, sind Muskelerkrankungen wie Muskeldystrophien und Kardiomyopathien die Folge. Mit dem Wissen über die genaue Struktur und Funktionsweise von α-Actinin und Muskeln ließe sich nicht nur die Rolle von fehlerhaften, also mutierten α-Actinin-Formen in Erkrankungen besser verstehen, sondern auch die Diagnose erleichtern. Schlussendlich könnte das die Entwicklung neuer Behandlungsmöglichkeiten unterstützen.

Die Struktur von Muskelproteinen ist eines der Forschungsthemen von Kristina Djinović-Carugo an den Max F. Perutz Laboratories (MFPL) der Universität Wien und dem Department für Struktur- und Computerbiologie. Die Leiterin des "Laura Bassi Centre of Optimized Structural Studies" erklärt: "Mithilfe einer Technik namens Röntgenkristallographie haben wir die Struktur von α-Actinin aufgeklärt. Wir haben Jahre gebraucht, um genügend große Mengen hochwertigen Proteins zu produzieren und geeignete Kristalle für unsere Analysen herzustellen." Mit Geduld und innovativen Ansätzen gelang es den ForscherInnen schließlich, die Struktur von α-Actinin in hoher Auflösung aufzuklären und in enger Zusammenarbeit mit Mathias Gautel vom "British Heart Foundation Centre of Research Excellenz" am KCL auch zu zeigen, wie das Protein reguliert wird.

Struktur ähnelt Fusilli-Nudeln

Die Strukturaufklärung zeigte, dass α-Actinin einen symmetrischen Komplex bestehend aus zwei Molekülen bildet. Jedes dieser Moleküle hat einen Kopf, Hals und stabförmigen Körper, der vier zick-zack-artig angeordneten Fusilli-Nudeln ähnelt. Der Kopf von α-Actinin bindet Actin, während zwei L-förmige Domänen am Ende des Körpers mit der Halsregion des anderen Moleküls wechselwirken. Die Ergebnisse zeigten auch, dass die Gesamtstruktur mehr ist als nur die Summe ihrer Teile: Die genau entgegengesetzte Anordnung zweier α-Actinin-Moleküle erlaubt nicht nur die gleichzeitige Wechselwirkung mit Actin und Titin und deren Verankerung in der Z-Scheibe, sondern ermöglicht auch diese Wechselwirkung zu regulieren.

Fettsäure PIP2 steuert die α-Actinin-Funktion

"Es gab schon seit einigen Jahren die Hypothese, dass die Wechselwirkung zwischen α-Actinin und Titin durch ein Fettsäuremolekül namens PIP2 ein- und ausgeschalten wird. Unsere Strukturdaten haben nun zum ersten Mal gezeigt, wie die Fettsäure das α-Actinin-Muskelprotein öffnet und schließt und so seine Fähigkeit, Actin und Titin zu binden, steuert", erläutert Kristina Djinović-Carugo. Ist kein PIP2-Molekül gebunden, wechselwirkt eine der beiden L-förmigen α-Actinin-Domänen mit dem Hals des entgegengesetzt liegenden Moleküls, welcher strukturell Titin stark ähnelt. Ist PIP2 vorhanden, löst sich die L-förmige Domäne vom Hals und wechselwirkt stattdessen mit Titin. Die Dynamik von α-Actinin und seiner Wechselwirkung mit PIP2 klärte das Team in Zusammenarbeit mit Katharina Pirker (Universität für Bodenkultur Wien) und Bojan Žagrović (MFPL) auf. Die ForscherInnen um Mathias Gautel veränderten α-Actinin zudem so, dass es kein PIP2 mehr binden konnte oder so blockiert war, dass die Wechselwirkung mit Titin nicht mehr gelöst werden kann. Die Ergebnisse zeigten, dass sich in beiden Fällen keine geordneten Sarkomere mehr bilden konnten; so ein Muskel wäre funktionsunfähig.

Langfristige Förderung und internationale Zusammenarbeit als Grundlage

"Unsere Ergebnisse liefern neue Einblicke in den molekularen Aufbau und Funktionsweise eines Muskels. Das wird helfen Muskelerkrankungen besser zu verstehen und Behandlungsmöglichkeiten für diese zu entwickeln", so Kristina Djinović-Carugo und fügt hinzu: "Ohne eine langfristige Förderung durch den FWF, die Universität Wien, die FFG, das EU-FP7 Marie Curie Action 'Networks for iNitial Training'-Programm, die British Heart Foundation sowie die langjährige intensive Zusammenarbeit mit Mathias Gautel und Katarina Pirker wäre dieses Projekt nicht möglich gewesen. Diese Veröffentlichung beruht auf acht Jahren harter Arbeit."

Publikation in Cell:
Euripedes de Almeida Ribeiro, Nikos Pinotsis, Andrea Ghisleni, Anita Salmazo, Petr V. Konarev, Julius Kostan, Bjoern Sjoeblom, Claudia Schreiner, Anton A. Polyansky, Eirini A. Gkougkoulia, Mark R. Holt, Finn L. Aachmann, Bojan Žagrović, Enrica Bordignon, Katharina F. Pirker, Dmitri I. Svergun, Mathias Gautel and Kristina Djinović-Carugo: The structure and regulation of human muscle α-actinin. Cell. Dezember 2014.
DOI: http://dx.doi.org/10.1016/j.cell.2014.10.056

Wissenschaftlicher Kontakt
Univ.-Prof. Dipl.-Ing. Dr. Kristina Djinović-Carugo
Max F. Perutz Laboratories
Department für Strukturbiologie und Bioinformatik
Universität Wien
T +43-1-4277-522 03
kristina.djinovic@univie.ac.at

Rückfragehinweis
Dr. Lilly Sommer
Max F. Perutz Laboratories
Communications
T +43-1-4277-240 14
lilly.sommer@univie.ac.at

Die Universität Wien ist eine der ältesten und größten Universitäten Europas: An 19 Fakultäten und Zentren arbeiten rund 9.700 MitarbeiterInnen, davon 6.900 WissenschafterInnen. Die Universität Wien ist damit die größte Forschungsinstitution Österreichs sowie die größte Bildungsstätte: An der Universität Wien sind derzeit rund 92.000 nationale und internationale Studierende inskribiert. Mit über 180 Studien verfügt sie über das vielfältigste Studienangebot des Landes. http://univie.ac.at

1365 gegründet, feiert die Alma Mater Rudolphina Vindobonensis im Jahr 2015 ihr 650-jähriges Gründungsjubiläum mit einem vielfältigen Jahresprogramm – unterstützt von zahlreichen Sponsoren und Kooperationspartnern. Die Universität Wien bedankt sich dafür bei ihren KooperationspartnerInnen, insbesondere bei: Österreichische Post AG, Raiffeisen NÖ-Wien, Bundesministerium für Wissenschaft, Forschung und Wirtschaft, Stadt Wien, Industriellenvereinigung, Erste Bank, Vienna Insurance Group, voestalpine, ÖBB Holding AG, Bundesimmobiliengesellschaft, Mondi. Medienpartner sind: ORF, Die Presse, Der Standard.

Stephan Brodicky | Universität Wien

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wegbereiter für Vitamin A in Reis
21.07.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Pharmakologie - Im Strom der Bläschen
21.07.2017 | Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblicke unter die Oberfläche des Mars

21.07.2017 | Geowissenschaften

Wegbereiter für Vitamin A in Reis

21.07.2017 | Biowissenschaften Chemie

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungsnachrichten