Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie funktionieren unsere Muskeln?

27.11.2014

Utl.: ForscherInnen der MFPL liefern wichtige neue Einblicke in Muskelprotein

ForscherInnen um Kristina Djinović-Carugo von den Max F. Perutz Laboratories (MFPL) der Universität Wien und der Medizinischen Universität Wien haben erstmals die molekulare Struktur und Steuerung des lebenswichtigen Muskelproteins α-Actinin aufgeklärt. Die neue Studie erlaubt nie dagewesene Einblicke in die Funktionsweise des Proteins und seine Rolle bei Muskelerkrankungen. Die in Zusammenarbeit mit dem King’s College London (KCL) gewonnen Erkenntnisse, die zu verbesserten Behandlungsmöglichkeiten beitragen können, erscheinen im hochkarätigen Fachjournal Cell.


Oberflächenstruktur des α-Actinin-Dimers vor dem Hintergrund einer elektronenmikroskopischen Aufnahme von Muskel-Sarkomeren.

Copyright: Mathias Gautel und Andrea Ghisleni, KCL, Nikos Pinotsis und Kristina Djinović-Carugo, MFPL


Detailstruktur des α-Actinin Dimers. Der Kopf ist rot hervorgehoben, die Halsregion ist gelb eingefärbt, und die L-förmigen Domänen sind in lila und blau dargestellt.

Copyright: Kristina Djinović-Carugo, MFPL

Um Bewegungen jeglicher Art ausführen zu können, sind die meisten Tiere auf Muskeln angewiesen. Sei es um zu essen, sich zu verteidigen oder zu fliehen. Die kleinste funktionelle Einheit eines Muskels ist das Sarkomer, von denen Hunderte hintereinander angeordnet sind und so eine Muskelfaser bilden.

"Sarkomere bestehen zum größten Teil aus Proteinsträngen, sogenannten Filamenten, von Actin und Myosin. Damit ein Muskel sich verkürzen – also kontrahieren – kann, müssen sich diese Filamente gegeneinander verschieben können und in festen Ebenen, den Z-Scheiben, verankert sein. Z-Scheiben bestehen zum Großteil aus dem Protein α-Actinin, welches auch das Protein Titin verankert. Titin ist dafür verantwortlich, dass die Actin- und Myosinfilamente eines Sarkomers korrekt angeordnet sind, und stellt nach getaner Muskelarbeit die ursprüngliche Länge des Sarkomers wieder her", erklärt Strukturbiologin Kristina Djinović-Carugo.

Wichtige Rolle in Herz- und Muskelerkrankungen

α-Actinin ist ein lebenswichtiges Protein – Embryonen, die es nicht herstellen können, sterben. Wird α-Actinin zwar gebildet, funktioniert es aber nicht richtig, sind Muskelerkrankungen wie Muskeldystrophien und Kardiomyopathien die Folge. Mit dem Wissen über die genaue Struktur und Funktionsweise von α-Actinin und Muskeln ließe sich nicht nur die Rolle von fehlerhaften, also mutierten α-Actinin-Formen in Erkrankungen besser verstehen, sondern auch die Diagnose erleichtern. Schlussendlich könnte das die Entwicklung neuer Behandlungsmöglichkeiten unterstützen.

Die Struktur von Muskelproteinen ist eines der Forschungsthemen von Kristina Djinović-Carugo an den Max F. Perutz Laboratories (MFPL) der Universität Wien und dem Department für Struktur- und Computerbiologie. Die Leiterin des "Laura Bassi Centre of Optimized Structural Studies" erklärt: "Mithilfe einer Technik namens Röntgenkristallographie haben wir die Struktur von α-Actinin aufgeklärt. Wir haben Jahre gebraucht, um genügend große Mengen hochwertigen Proteins zu produzieren und geeignete Kristalle für unsere Analysen herzustellen." Mit Geduld und innovativen Ansätzen gelang es den ForscherInnen schließlich, die Struktur von α-Actinin in hoher Auflösung aufzuklären und in enger Zusammenarbeit mit Mathias Gautel vom "British Heart Foundation Centre of Research Excellenz" am KCL auch zu zeigen, wie das Protein reguliert wird.

Struktur ähnelt Fusilli-Nudeln

Die Strukturaufklärung zeigte, dass α-Actinin einen symmetrischen Komplex bestehend aus zwei Molekülen bildet. Jedes dieser Moleküle hat einen Kopf, Hals und stabförmigen Körper, der vier zick-zack-artig angeordneten Fusilli-Nudeln ähnelt. Der Kopf von α-Actinin bindet Actin, während zwei L-förmige Domänen am Ende des Körpers mit der Halsregion des anderen Moleküls wechselwirken. Die Ergebnisse zeigten auch, dass die Gesamtstruktur mehr ist als nur die Summe ihrer Teile: Die genau entgegengesetzte Anordnung zweier α-Actinin-Moleküle erlaubt nicht nur die gleichzeitige Wechselwirkung mit Actin und Titin und deren Verankerung in der Z-Scheibe, sondern ermöglicht auch diese Wechselwirkung zu regulieren.

Fettsäure PIP2 steuert die α-Actinin-Funktion

"Es gab schon seit einigen Jahren die Hypothese, dass die Wechselwirkung zwischen α-Actinin und Titin durch ein Fettsäuremolekül namens PIP2 ein- und ausgeschalten wird. Unsere Strukturdaten haben nun zum ersten Mal gezeigt, wie die Fettsäure das α-Actinin-Muskelprotein öffnet und schließt und so seine Fähigkeit, Actin und Titin zu binden, steuert", erläutert Kristina Djinović-Carugo. Ist kein PIP2-Molekül gebunden, wechselwirkt eine der beiden L-förmigen α-Actinin-Domänen mit dem Hals des entgegengesetzt liegenden Moleküls, welcher strukturell Titin stark ähnelt. Ist PIP2 vorhanden, löst sich die L-förmige Domäne vom Hals und wechselwirkt stattdessen mit Titin. Die Dynamik von α-Actinin und seiner Wechselwirkung mit PIP2 klärte das Team in Zusammenarbeit mit Katharina Pirker (Universität für Bodenkultur Wien) und Bojan Žagrović (MFPL) auf. Die ForscherInnen um Mathias Gautel veränderten α-Actinin zudem so, dass es kein PIP2 mehr binden konnte oder so blockiert war, dass die Wechselwirkung mit Titin nicht mehr gelöst werden kann. Die Ergebnisse zeigten, dass sich in beiden Fällen keine geordneten Sarkomere mehr bilden konnten; so ein Muskel wäre funktionsunfähig.

Langfristige Förderung und internationale Zusammenarbeit als Grundlage

"Unsere Ergebnisse liefern neue Einblicke in den molekularen Aufbau und Funktionsweise eines Muskels. Das wird helfen Muskelerkrankungen besser zu verstehen und Behandlungsmöglichkeiten für diese zu entwickeln", so Kristina Djinović-Carugo und fügt hinzu: "Ohne eine langfristige Förderung durch den FWF, die Universität Wien, die FFG, das EU-FP7 Marie Curie Action 'Networks for iNitial Training'-Programm, die British Heart Foundation sowie die langjährige intensive Zusammenarbeit mit Mathias Gautel und Katarina Pirker wäre dieses Projekt nicht möglich gewesen. Diese Veröffentlichung beruht auf acht Jahren harter Arbeit."

Publikation in Cell:
Euripedes de Almeida Ribeiro, Nikos Pinotsis, Andrea Ghisleni, Anita Salmazo, Petr V. Konarev, Julius Kostan, Bjoern Sjoeblom, Claudia Schreiner, Anton A. Polyansky, Eirini A. Gkougkoulia, Mark R. Holt, Finn L. Aachmann, Bojan Žagrović, Enrica Bordignon, Katharina F. Pirker, Dmitri I. Svergun, Mathias Gautel and Kristina Djinović-Carugo: The structure and regulation of human muscle α-actinin. Cell. Dezember 2014.
DOI: http://dx.doi.org/10.1016/j.cell.2014.10.056

Wissenschaftlicher Kontakt
Univ.-Prof. Dipl.-Ing. Dr. Kristina Djinović-Carugo
Max F. Perutz Laboratories
Department für Strukturbiologie und Bioinformatik
Universität Wien
T +43-1-4277-522 03
kristina.djinovic@univie.ac.at

Rückfragehinweis
Dr. Lilly Sommer
Max F. Perutz Laboratories
Communications
T +43-1-4277-240 14
lilly.sommer@univie.ac.at

Die Universität Wien ist eine der ältesten und größten Universitäten Europas: An 19 Fakultäten und Zentren arbeiten rund 9.700 MitarbeiterInnen, davon 6.900 WissenschafterInnen. Die Universität Wien ist damit die größte Forschungsinstitution Österreichs sowie die größte Bildungsstätte: An der Universität Wien sind derzeit rund 92.000 nationale und internationale Studierende inskribiert. Mit über 180 Studien verfügt sie über das vielfältigste Studienangebot des Landes. http://univie.ac.at

1365 gegründet, feiert die Alma Mater Rudolphina Vindobonensis im Jahr 2015 ihr 650-jähriges Gründungsjubiläum mit einem vielfältigen Jahresprogramm – unterstützt von zahlreichen Sponsoren und Kooperationspartnern. Die Universität Wien bedankt sich dafür bei ihren KooperationspartnerInnen, insbesondere bei: Österreichische Post AG, Raiffeisen NÖ-Wien, Bundesministerium für Wissenschaft, Forschung und Wirtschaft, Stadt Wien, Industriellenvereinigung, Erste Bank, Vienna Insurance Group, voestalpine, ÖBB Holding AG, Bundesimmobiliengesellschaft, Mondi. Medienpartner sind: ORF, Die Presse, Der Standard.

Stephan Brodicky | Universität Wien

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen
20.09.2017 | Veterinärmedizinische Universität Wien

nachricht Molekulare Kraftmesser
20.09.2017 | Max-Planck-Institut für Biochemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik