Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie funktionieren unsere Muskeln?

27.11.2014

Utl.: ForscherInnen der MFPL liefern wichtige neue Einblicke in Muskelprotein

ForscherInnen um Kristina Djinović-Carugo von den Max F. Perutz Laboratories (MFPL) der Universität Wien und der Medizinischen Universität Wien haben erstmals die molekulare Struktur und Steuerung des lebenswichtigen Muskelproteins α-Actinin aufgeklärt. Die neue Studie erlaubt nie dagewesene Einblicke in die Funktionsweise des Proteins und seine Rolle bei Muskelerkrankungen. Die in Zusammenarbeit mit dem King’s College London (KCL) gewonnen Erkenntnisse, die zu verbesserten Behandlungsmöglichkeiten beitragen können, erscheinen im hochkarätigen Fachjournal Cell.


Oberflächenstruktur des α-Actinin-Dimers vor dem Hintergrund einer elektronenmikroskopischen Aufnahme von Muskel-Sarkomeren.

Copyright: Mathias Gautel und Andrea Ghisleni, KCL, Nikos Pinotsis und Kristina Djinović-Carugo, MFPL


Detailstruktur des α-Actinin Dimers. Der Kopf ist rot hervorgehoben, die Halsregion ist gelb eingefärbt, und die L-förmigen Domänen sind in lila und blau dargestellt.

Copyright: Kristina Djinović-Carugo, MFPL

Um Bewegungen jeglicher Art ausführen zu können, sind die meisten Tiere auf Muskeln angewiesen. Sei es um zu essen, sich zu verteidigen oder zu fliehen. Die kleinste funktionelle Einheit eines Muskels ist das Sarkomer, von denen Hunderte hintereinander angeordnet sind und so eine Muskelfaser bilden.

"Sarkomere bestehen zum größten Teil aus Proteinsträngen, sogenannten Filamenten, von Actin und Myosin. Damit ein Muskel sich verkürzen – also kontrahieren – kann, müssen sich diese Filamente gegeneinander verschieben können und in festen Ebenen, den Z-Scheiben, verankert sein. Z-Scheiben bestehen zum Großteil aus dem Protein α-Actinin, welches auch das Protein Titin verankert. Titin ist dafür verantwortlich, dass die Actin- und Myosinfilamente eines Sarkomers korrekt angeordnet sind, und stellt nach getaner Muskelarbeit die ursprüngliche Länge des Sarkomers wieder her", erklärt Strukturbiologin Kristina Djinović-Carugo.

Wichtige Rolle in Herz- und Muskelerkrankungen

α-Actinin ist ein lebenswichtiges Protein – Embryonen, die es nicht herstellen können, sterben. Wird α-Actinin zwar gebildet, funktioniert es aber nicht richtig, sind Muskelerkrankungen wie Muskeldystrophien und Kardiomyopathien die Folge. Mit dem Wissen über die genaue Struktur und Funktionsweise von α-Actinin und Muskeln ließe sich nicht nur die Rolle von fehlerhaften, also mutierten α-Actinin-Formen in Erkrankungen besser verstehen, sondern auch die Diagnose erleichtern. Schlussendlich könnte das die Entwicklung neuer Behandlungsmöglichkeiten unterstützen.

Die Struktur von Muskelproteinen ist eines der Forschungsthemen von Kristina Djinović-Carugo an den Max F. Perutz Laboratories (MFPL) der Universität Wien und dem Department für Struktur- und Computerbiologie. Die Leiterin des "Laura Bassi Centre of Optimized Structural Studies" erklärt: "Mithilfe einer Technik namens Röntgenkristallographie haben wir die Struktur von α-Actinin aufgeklärt. Wir haben Jahre gebraucht, um genügend große Mengen hochwertigen Proteins zu produzieren und geeignete Kristalle für unsere Analysen herzustellen." Mit Geduld und innovativen Ansätzen gelang es den ForscherInnen schließlich, die Struktur von α-Actinin in hoher Auflösung aufzuklären und in enger Zusammenarbeit mit Mathias Gautel vom "British Heart Foundation Centre of Research Excellenz" am KCL auch zu zeigen, wie das Protein reguliert wird.

Struktur ähnelt Fusilli-Nudeln

Die Strukturaufklärung zeigte, dass α-Actinin einen symmetrischen Komplex bestehend aus zwei Molekülen bildet. Jedes dieser Moleküle hat einen Kopf, Hals und stabförmigen Körper, der vier zick-zack-artig angeordneten Fusilli-Nudeln ähnelt. Der Kopf von α-Actinin bindet Actin, während zwei L-förmige Domänen am Ende des Körpers mit der Halsregion des anderen Moleküls wechselwirken. Die Ergebnisse zeigten auch, dass die Gesamtstruktur mehr ist als nur die Summe ihrer Teile: Die genau entgegengesetzte Anordnung zweier α-Actinin-Moleküle erlaubt nicht nur die gleichzeitige Wechselwirkung mit Actin und Titin und deren Verankerung in der Z-Scheibe, sondern ermöglicht auch diese Wechselwirkung zu regulieren.

Fettsäure PIP2 steuert die α-Actinin-Funktion

"Es gab schon seit einigen Jahren die Hypothese, dass die Wechselwirkung zwischen α-Actinin und Titin durch ein Fettsäuremolekül namens PIP2 ein- und ausgeschalten wird. Unsere Strukturdaten haben nun zum ersten Mal gezeigt, wie die Fettsäure das α-Actinin-Muskelprotein öffnet und schließt und so seine Fähigkeit, Actin und Titin zu binden, steuert", erläutert Kristina Djinović-Carugo. Ist kein PIP2-Molekül gebunden, wechselwirkt eine der beiden L-förmigen α-Actinin-Domänen mit dem Hals des entgegengesetzt liegenden Moleküls, welcher strukturell Titin stark ähnelt. Ist PIP2 vorhanden, löst sich die L-förmige Domäne vom Hals und wechselwirkt stattdessen mit Titin. Die Dynamik von α-Actinin und seiner Wechselwirkung mit PIP2 klärte das Team in Zusammenarbeit mit Katharina Pirker (Universität für Bodenkultur Wien) und Bojan Žagrović (MFPL) auf. Die ForscherInnen um Mathias Gautel veränderten α-Actinin zudem so, dass es kein PIP2 mehr binden konnte oder so blockiert war, dass die Wechselwirkung mit Titin nicht mehr gelöst werden kann. Die Ergebnisse zeigten, dass sich in beiden Fällen keine geordneten Sarkomere mehr bilden konnten; so ein Muskel wäre funktionsunfähig.

Langfristige Förderung und internationale Zusammenarbeit als Grundlage

"Unsere Ergebnisse liefern neue Einblicke in den molekularen Aufbau und Funktionsweise eines Muskels. Das wird helfen Muskelerkrankungen besser zu verstehen und Behandlungsmöglichkeiten für diese zu entwickeln", so Kristina Djinović-Carugo und fügt hinzu: "Ohne eine langfristige Förderung durch den FWF, die Universität Wien, die FFG, das EU-FP7 Marie Curie Action 'Networks for iNitial Training'-Programm, die British Heart Foundation sowie die langjährige intensive Zusammenarbeit mit Mathias Gautel und Katarina Pirker wäre dieses Projekt nicht möglich gewesen. Diese Veröffentlichung beruht auf acht Jahren harter Arbeit."

Publikation in Cell:
Euripedes de Almeida Ribeiro, Nikos Pinotsis, Andrea Ghisleni, Anita Salmazo, Petr V. Konarev, Julius Kostan, Bjoern Sjoeblom, Claudia Schreiner, Anton A. Polyansky, Eirini A. Gkougkoulia, Mark R. Holt, Finn L. Aachmann, Bojan Žagrović, Enrica Bordignon, Katharina F. Pirker, Dmitri I. Svergun, Mathias Gautel and Kristina Djinović-Carugo: The structure and regulation of human muscle α-actinin. Cell. Dezember 2014.
DOI: http://dx.doi.org/10.1016/j.cell.2014.10.056

Wissenschaftlicher Kontakt
Univ.-Prof. Dipl.-Ing. Dr. Kristina Djinović-Carugo
Max F. Perutz Laboratories
Department für Strukturbiologie und Bioinformatik
Universität Wien
T +43-1-4277-522 03
kristina.djinovic@univie.ac.at

Rückfragehinweis
Dr. Lilly Sommer
Max F. Perutz Laboratories
Communications
T +43-1-4277-240 14
lilly.sommer@univie.ac.at

Die Universität Wien ist eine der ältesten und größten Universitäten Europas: An 19 Fakultäten und Zentren arbeiten rund 9.700 MitarbeiterInnen, davon 6.900 WissenschafterInnen. Die Universität Wien ist damit die größte Forschungsinstitution Österreichs sowie die größte Bildungsstätte: An der Universität Wien sind derzeit rund 92.000 nationale und internationale Studierende inskribiert. Mit über 180 Studien verfügt sie über das vielfältigste Studienangebot des Landes. http://univie.ac.at

1365 gegründet, feiert die Alma Mater Rudolphina Vindobonensis im Jahr 2015 ihr 650-jähriges Gründungsjubiläum mit einem vielfältigen Jahresprogramm – unterstützt von zahlreichen Sponsoren und Kooperationspartnern. Die Universität Wien bedankt sich dafür bei ihren KooperationspartnerInnen, insbesondere bei: Österreichische Post AG, Raiffeisen NÖ-Wien, Bundesministerium für Wissenschaft, Forschung und Wirtschaft, Stadt Wien, Industriellenvereinigung, Erste Bank, Vienna Insurance Group, voestalpine, ÖBB Holding AG, Bundesimmobiliengesellschaft, Mondi. Medienpartner sind: ORF, Die Presse, Der Standard.

Stephan Brodicky | Universität Wien

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Sollbruchstellen im Rückgrat - Bioabbaubare Polymere durch chemische Gasphasenabscheidung
02.12.2016 | Gesellschaft Deutscher Chemiker e.V.

nachricht "Fingerabdruck" diffuser Protonen entschlüsselt
02.12.2016 | Universität Leipzig

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie