Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Enzyme kommunizieren

19.05.2017

Freiburger Wissenschaftler erklären Mechanismus in Zellen, der elektrische in chemische Signale umwandelt

Die Enzyme Stickstoffmonoxid NO-Synthase (NOS1) und Proteinkinase C (PKC) spielen bei einer Vielzahl von Signalübertragungsprozessen in Nervenzellen des Gehirns wie auch in Zellen anderer Organe eine entscheidende Rolle. Die Wissenschaftlerinnen Dr. Cristina Constantin und Dr. Catrin Müller haben zusammen mit Prof. Dr. Bernd Fakler am Physiologischen Institut der Universität Freiburg erstmals gezeigt, dass sich die Enzyme unter physiologischen Bedingungen allein durch die elektrische Erregung an der Zellmembran aktivieren lassen.


Elektro-chemische Kopplung durch Superkomplexe: Der Kalziumkanal (Cav2) liefert Kalziumionen (Ca2+), die das Enzym NO-Synthase (NOS) zur Herstellung des Botenstoffes NO aktivieren. Grafik: Bernd Fakler

Durch direkte strukturelle Bindung der beiden Enzyme an spannungsgesteuerte Kalziumkanäle entstehen Proteinsuperkomplexe, die elektrische Signale an der Zellmembran mit hoher Geschwindigkeit und zielgerichtet in chemische Signalprozesse im Zellinneren umwandeln. Die Forschenden stellen ihre Arbeit in der aktuellen Ausgabe der Fachzeitschrift „Proceedings of the National Academy of Sciences (PNAS)“ vor.

Die Arbeitsgruppe um Fakler zeigte in der Vergangenheit, dass die beiden kalziumabhängigen Enzyme NO-Synthase (NOS1) und Proteinkinase C (PKC) Bestandteile der Proteinumgebung bestimmter spannungsgesteuerter Kalziumkanäle (Cav2-Kanäle) im Gehirn sind. Bisher war jedoch nicht bekannt, wie die Enzyme mit den Kalziumkanälen kommunizieren. In seiner Arbeit hat das Forschungsteam bewiesen, dass die Enzyme hierzu einen Proteinsuperkomplex bilden.

Darin sind NOS1 oder PKC und die Cav2-Kanäle strukturell miteinander vereinigt, was die beiden kalziumabhängigen Enzyme zum einem an der Innenseite der Zellmembran verankert und sie zum anderen in die unmittelbare Nähe der Kanalpore platziert.

Wird die Zellmembran erregt, öffnen sich die Cav2-Kanäle und liefern Kalziumionen auf die Innenseite der Zellmembran, wo diese an die beiden Enzyme binden. Diese Bindung aktiviert die Enzyme, die dann entweder NO, einen frei beweglichen Botenstoff, erzeugen oder eine Phosphatgruppe auf zytoplasmatische Zielproteine übertragen.

Wegen des geringen Abstandes zwischen Kanalpore und Enzym reichen Erregungen der Zellmembran von weniger als einer Millisekunde aus, um eine zuverlässige Enzymaktivität auszulösen. Maximale Wirkung der elektro-chemischen Kopplung wird erzielt, wenn die Zellmembran nicht von einzelnen Impulsen erregt wird, sondern die Nervenzelle Salven mit einer Frequenz von einem Hertz und mehr feuert.

Die Cav2-Enzym-Superkomplexe garantieren aber nicht nur eine schnelle und zuverlässige elektro-chemische Koppelung. Sie sorgen auch dafür, dass die übertragenen Signale sehr lokal, also auf einen Bereich von wenigen Nanometern um die Cav2–Kanäle, begrenzt bleiben.

Dadurch wird sichergestellt, dass die Enzyme nur die von ihnen initiierten zellulären Prozesse anstoßen, andere Kalzium-Signalwege, wie der gerichtete Zelltod, aber verhindert werden. Darüber hinaus haben die Experimente der Freiburger Forschenden einen Weg aufgezeigt, wie sich die Enzyme physiologisch aktivieren lassen. Dieser stellt eine Alternative zu den derzeit häufig benutzten künstlichen Aktivatoren, chemischen Stoffen wie den NO-Donoren oder den Diacylglyceriden, dar.

Bernd Fakler ist Leiter der Abteilung II des Physiologischen Instituts und Bereichskoordinator am Exzellenzcluster BIOSS Centre for Biological Signalling Studies der Universität Freiburg.

Originalpublikation:
Constantin, C.E., Müller, C.S., Leitner, M., Bildl, W., Schulte, U., Oliver, D., and Fakler, B. (2017). Identification of Cav2-PKC and Cav2-NOS1 complexes as entities for ultrafast electro-mechanical coupling. Proc Natl Acad Sci USA (in press).

Kontakt:
Prof. Dr. Bernd Fakler
Physiologisches Institut, Medizinische Fakultät / BIOSS Centre for Biological Signalling Studies
Albert-Ludwigs-Universität Freiburg
Tel.: 0761/203-5175
E-Mail: bernd.fakler@physiologie.uni-freiburg.de

Weitere Informationen:

https://www.pr.uni-freiburg.de/pm/2017/wie-enzyme-kommunizieren

Rudolf-Werner Dreier | Albert-Ludwigs-Universität Freiburg im Breisgau

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Krebszellen die Lunge fluten
19.05.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Licht am Abend verbessert Leistung im Endspurt
19.05.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Erstmals gemessen: Quantenfeldtheorie im Quanten-Simulator

Eine neue Art der Vermessung von Vielteilchen-Quantensystemen präsentiert die TU Wien in Kooperation mit der Universität Heidelberg nun im Fachjournal „Nature“.

In „Quanten-Simulatoren“ kann man bislang unbeantwortbaren Fragen nachgehen.
Was geschah am Beginn des Universums? Wie kann man die Struktur von...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: „UrbanSAX“ geht in London an den Start

Vom 25. bis 28. Mai 2017 tritt die studentische Initiative "Fortis Saxonia" der TU Chemnitz mit ihrem neuentwickelten Fahrzeug "UrbanSAX" beim Shell Eco-marathon an

Es ist der größte Wettbewerb für nachhaltige Mobilität in Europa - der Shell Eco-marathon. Vom 25. bis 28. Mai 2017 werden 192 Teams von Hochschulen und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Gaming trifft Wissenschaft

19.05.2017 | Veranstaltungen

Internationale Konferenz zur Präzisionstechnik und Nanotechnologie

19.05.2017 | Veranstaltungen

Über 500 Wissenschaftler tagen auf dem Campus der TU Kaiserslautern

18.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Ein neuer Blick in die Lunge (und andere Organe)

19.05.2017 | Medizintechnik

Wie Enzyme kommunizieren

19.05.2017 | Biowissenschaften Chemie

Wie Krebszellen die Lunge fluten

19.05.2017 | Biowissenschaften Chemie