Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie die Kraftwerke der Zelle ihre Form erhalten

11.09.2015

HZI-Wissenschaftler entwickeln Modell für dynamische Mitochrondien-Netzwerke
Mitochondrien sind die Kraftwerke der Zellen. Sie kontrollieren die Energieproduktion und initiieren verschiedene zentrale zelluläre Prozesse. Verlieren sie ihre Funktion, kann dies eine Reihe von Krankheiten hervorrufen oder begünstigen. Das sind in erster Linie neurologische oder muskuläre Erkrankungen, aber auch Alterungsprozesse. 

Mit einem neuen mathematischen Modell haben System-Biologen am Helmholtz-Zentrum für Infektionsforschung (HZI) in Braunschweig nun beschrieben, welche Mechanismen an der Bildung und Aufrechterhaltung der dynamischen Mitochondrien-Netzwerke in Zellen beteiligt sind.


Das Zellskelett (graue Linien) beeinflusst die Fusion der Mitochondrien.Es teilt sie in faserige Netzstrukturen (blau) und kleinere Fragmente (rot) und formt so deren Netzwerk.

© HZI / Sukhorukov

Ihre Ergebnisse veröffentlichten die Wissenschaftler jetzt im Journal „Scientific Reports“.

Eine Besonderheit der Mitochondrien ist ihr ausgeprägtes dynamisches Verhalten innerhalb der Zelle. Sie bilden ein Netzwerk, welches sich im Minutentakt verändert, da sich die Mitochondrien teilen und wieder miteinander fusionieren. Ihre räumliche Struktur beeinflusst dabei maßgeblich, wie effektiv sie Energie bereitstellen können:

Faserige Netzstrukturen produzieren viel Energie, kleinere Fragmente sind weniger effektiv „Auch bei der Zellalterung spielen solche Prozesse eine Rolle. Gestresste oder geschädigte Mitochondrien werden fragmentiert und anschließend entsorgt“, sagt Valerii Sukhorukov, Wissenschaftler in der Abteilung System-Immunologie am HZI und Erstautor der Studie.

Wie entsteht aber die dynamische Balance zwischen den kleinen Fragmenten und den effektiven Fasern der Mitochondrien? Das war eine wichtige Frage, die sich die Forscher gestellt haben. „Solche Mechanismen können nicht allein über biochemische Analysen studiert werden. Man braucht dafür modellbasierte Simulationen am Computer, die die dynamischen Veränderungen in der Zelle gut erklären“, sagt Prof. Michael Meyer-Hermann, Leiter der Abteilung System-Immunologie.

Dazu entwickelten die Wissenschaftler ein erstes mathematisches Modell, welches sich auf die unterschiedlichen Längen der Mitochondrien-Fragmente in linearer oder verzweigter Anordnung stützte. Das zentrale Resultat der Untersuchung ist, dass eine exakte Beschreibung der Mitochondrien in der Zelle erst durch die Berücksichtigung der zufälligen Bewegung der Mitochondrien entlang der Fasern des Zellskeletts, den Mikrotubuli, möglich wurde. Daraus entstand ein sogenanntes Graphenmodell, das auf der Dichte der Mikrotubuli und ihrer Überkreuzungen in der Zelle beruht. Es beschreibt alle bisher experimentell gefundenen Formen von Mitochondrien und liefert auch Erklärungen für bisher unverstandene Ereignisse.

Sukhorukov und seine Kollegen möchten in Zukunft das neue mathematische Modell verwenden, um die Qualitätskontrolle der fragmentierten Mitochondrien zu analysieren und zu verstehen, wie die Zellen Schäden in Mitochondrien kontrollieren oder beseitigen. „Dies wäre sehr wichtig, um zu verstehen, wie Zellen ihren Energiehaushalt trotz einer Ansammlung von Schäden mit dem Alter kontrollieren. Daraus könnten wir Rückschlüsse über bestimmte genetisch bedingte Krankheiten wie Parkinson und über Alterungsprozesse im Immunsystem ziehen“, sagt Sukhorukov.

Originalpublikation:
Valerii M. Sukhorukov, Michael Meyer-Hermann. Structural Heterogeneity of the Mitochondria Induced by the Microtubule Cytoskleleton. Scientific Reports. 2015 Sep 11. 5:13924. DOI: 10.1038/srep13924

Die Abteilung „System-Immunologie“ des HZI befasst sich mit der mathematischen Modellierung von immunologischen Fragestellungen. Die Abteilung ist mit dem Braunschweig Integrated Centre for Systems Biology (BRICS) assoziiert, einem neuen Forschungszentrum für Systembiologie, das gemeinsam vom HZI und der Technischen Universität Braunschweig gegründet wurde.

Das Helmholtz-Zentrum für Infektionsforschung:
Am Helmholtz-Zentrum für Infektionsforschung (HZI) untersuchen Wissenschaftler die Mechanismen von Infektionen und ihrer Abwehr. Was Bakterien oder Viren zu Krankheitserregern macht: Das zu verstehen soll den Schlüssel zur Entwicklung neuer Medikamente und Impfstoffe liefern. An seinem Standort in Braunschweig-Stöckheim blickt das Zentrum auf eine jahrzehntelange Historie zurück. Bereits 1965 begannen hier die ersten Arbeiten; 2015 feiert das HZI 50-jähriges Jubiläum. http://www.helmholtz-hzi.de

Weitere Informationen:

http://www.helmholtz-hzi.de/de/aktuelles/news/ansicht/article/complete/wie_die_k... - Diese Pressemitteilung auf helmholtz-hzi.de
http://dx.doi.org/10.1038/srep13924 - Link zur Originalpublikation

Susanne Thiele | Helmholtz-Zentrum für Infektionsforschung

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Blattkäfer: Schon winzige Pestizid-Dosis beeinträchtigt Fortpflanzung
26.07.2017 | Universität Bielefeld

nachricht Akute myeloische Leukämie (AML): Neues Medikament steht kurz vor der Zulassung in Europa
26.07.2017 | Universitätsklinikum Ulm

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Robuste Computer für's Auto

26.07.2017 | Seminare Workshops

Läuft wie am Schnürchen!

26.07.2017 | Seminare Workshops

Leicht ist manchmal ganz schön schwer!

26.07.2017 | Seminare Workshops