Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie die „biologische Zündkerze“ in biomolekularen Motoren funktioniert

04.08.2014

Heidelberger Forscher simulieren Vorgänge, durch die Bewegung in Muskeln ausgelöst wird

Mit Hochleistungsrechnern und quantenmechanischen Methoden haben Wissenschaftler der Universität Heidelberg Vorgänge simuliert, die aufklären, wie die „biologische Zündkerze“ in den biomolekularen Motoren von Zellen funktioniert.

Im Mittelpunkt der Untersuchungen unter der Leitung von Dr. Stefan Fischer stand das sogenannte Motorprotein Myosin, das unter anderem für Muskelbewegungen verantwortlich ist. Die umfangreichen Simulationen der Heidelberger Forscher zeigen, wie dort die Energiefreisetzung ausgelöst wird, um den komplexen Motor in Gang zu bringen. Die Ergebnisse der am Interdisziplinären Zentrum für Wissenschaftliches Rechnen durchgeführten Forschungsarbeiten wurden in der Fachzeitschrift PNAS veröffentlicht.

Biomolekulare Motoren sind Eiweißmoleküle, die in Zellen für mechanische Bewegung verantwortlich sind. Als kleinste bekannte Motoren verwenden sie als Treibstoff das Molekül Adenosintriphosphat (ATP), das alle Lebewesen als Energiequelle für energieverbrauchende Prozesse nutzen. Um zu verstehen, wie diese Zellmotoren mit Hilfe des Moleküls ATP funktionieren, kann zum Vergleich der Automotor herangezogen werden, bei dem die Energie durch die Verbrennung von Benzin freigesetzt wird. Da Benzin sich nicht von selbst entzündet, muss Energie zugeführt werden, um die Verbrennungs-Reaktion auszulösen.

Dies geschieht mit Hilfe der Zündkerze. Erst durch die Zuführung der Hitze-Energie des Funkens kann die Energiebarriere der Benzin-Verbrennung überwunden werden, um die Energiefreisetzung in Gang zu bringen. Bezogen auf biomolekulare Motoren gibt es hier eine Reihe von Parallelen, wie Stefan Fischer betont. Bei ATP handelt es sich um ein stabiles Molekül, das seine Energie ebenfalls nicht spontan freisetzt. Obwohl es nicht wie Benzin verbrannt, sondern gespalten wird, muss auch in diesem Fall die Energiebarriere überwunden werden, um die als Hydrolyse bezeichnete Spaltung des ATP in Gang zu bringen.

Im Rahmen seiner Forschungsarbeiten hat sich das Team um Dr. Fischer mit der Frage beschäftigt, wie genau das Auslösen der Energiefreisetzung in biomolekularen Motoren funktioniert. „Wir wollten herausfinden, auf welche Weise die im ATP gespeicherte Energie gezielt und zeitgenau freigesetzt wird“, erläutert der Heidelberger Forscher, der am Interdisziplinären Zentrum für wissenschaftliches Rechnen (IWR) die Arbeitsgruppe Biologische Makromoleküle leitet.

Als Ausgangsbasis für die Untersuchung der „biologischen Zündkerze“ verwendeten die Wissenschaftler den biomolekularen Motor Myosin. Dabei handelt es sich um eine Familie von Motorproteinen, die mit Hilfe von ATP zum Beispiel Bewegungsvorgänge in Muskeln antreibt. Das ATP wird in einer Art „Tasche“ im Protein gebunden. Diese Tasche senkt die Energiebarriere für die ATP-Spaltung – dieser Vorgang der Absenkung wird als Katalyse bezeichnet – und sorgt so dafür, dass die gewünschte chemische Reaktion erfolgt und letztendlich Energie freigesetzt wird. Die „katalytische Tasche“ ist nach den Worten von Dr. Fischer das biologische Äquivalent zur Zündkerze des Verbrennungsmotors.

Die Existenz einer solchen „biologischen Zündkerze“ ist zwar seit mehr als 50 Jahren bekannt. Ihre Funktionsweise konnte die Forschung bisher jedoch nie vollständig aufklären, wie Stefan Fischer betont: „Die Reaktion findet in ungefähr einer Trillionstel Sekunde statt, so dass experimentelle Untersuchungsmethoden in diesem Fall an ihre Grenzen stoßen. Erst die computergestützten Methoden des Wissenschaftlichen Rechnens erlauben die Erforschung des genauen Ablaufes.“

Die Wissenschaftler mussten zunächst aus den fast 6.000 Atomen des Myosins diejenigen bestimmen, die für die Katalyse unerlässlich sind. In umfangreichen und mehrere Jahre dauernden Simulationen konnten die Forscher die Rolle von rund 200 relevanten Atomen bestimmen. Da sich während der Spaltung des ATP sowohl die Atome des Myosins als auch die des ATP bewegen müssen, ergeben sich unzählige Möglichkeiten an Bewegungen im dreidimensionalen Raum – wobei allerdings nur ein Weg zur niedrigsten Energiebarriere führt. „Wir mussten die Wege aller rund 200 beteiligten Atome in drei Dimensionen berechnen, insgesamt also ein Problem in 600 Dimensionen“, sagt Dr. Fischer.

Für ihre komplexen Berechnungen kombinierten die Wissenschaftler Methoden aus der Quantenmechanik mit dem Einsatz von Hochleistungsrechnern. Damit konnten sie aufklären, wie die Interaktionen zwischen ATP und dem Myosin organisiert sind, damit die Energiebarriere zur ATP-Spaltung gesenkt wird.

Nach den Worten von Stefan Fischer sind elektrostatische Ladungen auf den Atomen des Proteins um das ATP so aufgestellt, dass sie die Elektronendichte dieses Moleküls derart verändern, dass sich der Treibstoff ATP dann leichter spalten lässt. Der Heidelberger Wissenschaftler: „Wir konnten auf diese Weise genau quantifizieren, wie viel jedes in diesem Prozess relevante Atom des Myosins zur Verringerung der Energiebarriere beiträgt. Auf der Basis dieser Erkenntnisse ist es uns gelungen, die ,katalytische Strategie‘ des Proteins klar zu formulieren.“

Der von den IWR-Forschern beschriebene Mechanismus der „biologischen Zündkerze“ findet nicht nur in Zellmotoren statt, sondern kommt vermutlich auch in allen anderen Eiweißmolekülen, die ATP als Energiequelle benutzen, zur Anwendung, wie Dr. Fischer betont.

„Da ATP die grundlegende Energiewährung für Zellen ist, sind fast alle biochemischen Prozesse im Körper betroffen. In der praktischen Anwendung können unsere Erkenntnisse möglicherweise einen Beitrag dazu leisten, an neuen Medikamenten zur Therapie von Herzmuskelerkrankungen zu forschen. Vorstellbar sind aber auch Impulse für neue therapeutische Ansätze bei Erkrankungen, in denen die ATP-Spaltung ein Teil der Biochemie des pathologischen Systems ist.“

Originalpublikation:
Farooq Ahmad Kiani and Stefan Fischer: Catalytic Strategy Used By The Myosin Motor To Hydrolyze ATP. PNAS (published online 8 July 2014), doi:10.1073/pnas.1401862111

Informationen im Internet:
http://www.iwr.uni-heidelberg.de/groups/biocomp/fischer

Kontakt:
Dr. Stefan Fischer
Interdisziplinäres Zentrum für Wissenschaftliches Rechnen
Telefon (06221) 54-8858
stefan.fischer@iwr.uni-heidelberg.de

Kommunikation und Marketing
Pressestelle
Telefon (06221) 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-heidelberg.de

Weitere Berichte zu: ATP ATP-Spaltung Benzin Energie Energiebarriere Katalyse Motoren Myosin PNAS Treibstoff Zellen Zündkerze

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Eine Frage der Dynamik
19.02.2018 | Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)

nachricht Forscherteam deckt die entscheidende Rolle des Enzyms PP5 bei Herzinsuffizienz auf
19.02.2018 | Westfälische Wilhelms-Universität Münster

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Im Focus: Quantenbits per Licht übertragen

Physiker aus Princeton, Konstanz und Maryland koppeln Quantenbits und Licht

Der Quantencomputer rückt näher: Neue Forschungsergebnisse zeigen das Potenzial von Licht als Medium, um Informationen zwischen sogenannten Quantenbits...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Konferenz "Die Mobilität von morgen gestalten"

19.02.2018 | Veranstaltungen

Von Bitcoins bis zur Genomchirurgie

19.02.2018 | Veranstaltungen

Unternehmenssteuerung und Controlling im digitalen Zeitalter

19.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Stahl ist nicht gleich Stahl: Informatiker und Materialforscher optimieren Werkstoffklassifizierung

19.02.2018 | Materialwissenschaften

Wenn Eiweiße einander die Hand geben

19.02.2018 | Materialwissenschaften

Konferenz "Die Mobilität von morgen gestalten"

19.02.2018 | Veranstaltungsnachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics