Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie der Schnupfen in die Zelle kommt

20.06.2016

Viren schleusen ihre Erbsubstanz in unsere Zellen ein. Wie das funktioniert, lässt sich nun an der TU Wien mit einer neuen Kombination von Analysemethoden untersuchen.

Schnupfenviren verursachen uns Ärger, indem sie in unsere Zellen eindringen und dort die RNA aus ihrem Inneren in das Cytoplasma der infizierten Zelle transportieren. Erst dadurch können sie sich vermehren. Wie diese Ausschleusung der RNA aus dem Inneren des Virus im Detail abläuft, ist schwer zu untersuchen.


Das Messprinzip: Die RNA aus dem Virus wird mit molecular beacons markiert

An der TU Wien wurden nun eine Methode entwickelt, mit der man diesen Prozess analysieren kann. Sie entstand aus der Kombination zweier etablierter Verfahren – sogenannten „Molecular Beacons (molekulare Leuchtfeuer)“ und der Kapillarelektrophorese im Chip-Format. Die neue Methode wurde nun publiziert und der Artikeltitel ziert das Cover des Fachjournals „Analytical and Bioanalytical Chemistry“.

Mini-Fußball mit Erbsubstanz

Das Schnupfenvirus, das Prof. Günter Allmaier und sein Team vom Institut für Chemische Technologien und Analytik studierten, ist relativ einfach aufgebaut. Es sieht aus wie ein Nano-Fußball mit einem Durchmesser von ungefähr 30 Nanometern. Seine Schale besteht aus vier verschiedenen Proteinen, die jeweils 60-fach vorhanden sind, im Inneren verbirgt sich die RNA, auf der die Erbinformation des Virus gespeichert ist.

„Bestimmte äußere Bedingungen können das Virus dazu bringen, seine RNA nach außen freizusetzen“, erklärt Victor Weiss, PostDoc von Günter Allmaier. „In unseren Zellen wird das durch einen niedrigeren pH-Wert ausgelöst, man kann denselben Effekt auch erzielen, indem man die Temperatur für zehn Minuten auf 57°C erhöht.“ In diesem Fall organisieren sich die Proteine um, die Schale des Virus bekommt Löcher, durch eines von ihnen wird dann der RNA-Strang freigegeben.

Für viele medizinische Fragen ist es wichtig, diesen Mechanismus genau zu verstehen – zum Beispiel für die künftige Entwicklung von Medikamenten, die genau diesen RNA-Transfer verhindern. Die Dynamik dieses Vorgangs konnte bisher nicht direkt beobachtet werden. In den Labors der TU Wien wird dieser Prozess aber nun experimentell zugänglich gemacht.

Fluoreszierende Marker und Elektrophorese

Man verwendet sogenante „Molecular Beacons“ – das sind maßgeschneiderte RNA (oder DNA-) Moleküle mit zwei verschiedenen Enden. An einem Ende sitzt ein Fluorophor, der aufleuchtet, wenn man ihn mit Laserlicht einer bestimmten Wellenlänge bestrahlt, am anderen Ende ein „Quencher“, der genau dieses Aufleuchten verhindert. „Anfangs ist das Molekül zusammengeklappt, Fluorophor und Quencher befinden sich ganz nahe nebeneinander, dann ist die Fluoreszenz sehr gering“, erklärt Victor Weiss.

Die Molecular Beacons können allerdings an eine ganz bestimmte RNA-Sequenz andocken. Wenn das passiert, klappt das Molekül auseinander, Fluorophor und Quencher sind plötzlich weit voneinander entfernt, und wenn man das Molekül dann mit dem passenden Laserlicht bestrahlt, fluoresziert es.

Man kann diese Molecular Beacons also verwenden, um bestimmte RNA-Sequenzen nachzuweisen. Diese Technik wurde an der TU Wien mit einer anderen bewährten Technik kombiniert – der Kapillarelektrophorese. Dabei trennt man die Komponenten einer Probe nach ihrer elektrophoretischer Mobilität (Wanderungsgeschwindigkeit in einem elektrischen Feld).

Eine kleine Flüssigkeitsprobe wird in einem Chip-Kanal platziert, und dort wir ein elektrisches Feld angelegt, in dem die unterschiedlichen Nanopartikel auf charakteristische Weise unterschiedlich schnell wandern. Nach einer Trennstrecke von etwa eineinhalb Zentimetern trifft dann ein Laserstrahl auf die Partikel. Dort werden dann die leuchtenden Fluorophore des ausgeklappten Molecular Beacons gemessen, die an der Viren-RNA andocken konnten.

„Die unterschiedlichen Bestandteile der Probe kommen zu unterschiedlichen Zeitpunkten beim Laser an, erst dadurch kann man sichergehen, dass man genau misst, was man eigentlich messen möchte“, erklärt Günter Allmaier. „Damit können wir nun beispielsweise zeigen, welches Ende der RNA zuerst aus dem Virus austritt, und wie dieser Prozess genau abläuft.“

Im Prinzip lässt sich die Methode, die im Rahmen eines FWF Projektes gemeinsam mit der Forschungsgruppe Dieter Blaas (Medizinische Universität Wien) entwickelt wurde, auch auf alle anderen Viren anwenden. „Uns geht es um die Entwicklung der Methode, als Testobjekt ist das Schnupfenvirus geradezu ideal“, meint Allmaier. „Wir hoffen aber natürlich, dass sich diese Methode in der medizinischen Forschung etabliert. Dass sie großes Potenzial hat, haben wir nun gezeigt und zeigt sich auch in der Kooperation mit der Firma Agilent Technologies.“

Originalpublikation: Analytical and Bioanalytical Chemistry, doi:10.1007/s00216-016-9459-2

Rückfragehinweis:
Prof. Günter Allmaier
Institut für Chemische Technologien und Analytik
Technische Universität Wien
Getreidemarkt 9/164, A-1060 Wien
T: +43-1-58801-15160
guenter.allmaier@tuwien.ac.at

Aussender:
Dr. Florian Aigner
Büro für Öffentlichkeitsarbeit
Technische Universität Wien
Operngasse 11, 1040 Wien
T.: +43-1-58801-41027
florian.aigner@tuwien.ac.at

Weitere Informationen:

http://link.springer.com/article/10.1007%2Fs00216-016-9459-2 Originalpublikation

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Biologischer Lichtsensor in Aktion gefilmt
15.06.2018 | Paul Scherrer Institut (PSI)

nachricht Belohnung fürs Gehirn
15.06.2018 | Max-Planck-Institut für Biologie des Alterns

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 in Shanghai

Die AchemAsia geht in ihr viertes Jahrzehnt und bricht auf zu neuen Ufern: Das International Expo and Innovation Forum for Sustainable Chemical Production findet vom 21. bis 23. Mai 2019 in Shanghai, China statt. Gleichzeitig erhält die Veranstaltung ein aktuelles Profil: Die elfte Ausgabe fokussiert auf Themen, die für Chinas Prozessindustrie besonders relevant sind, und legt den Schwerpunkt auf Nachhaltigkeit und Innovation.

1989 wurde die AchemAsia als Spin-Off der ACHEMA ins Leben gerufen, um die Bedürfnisse der sich damals noch entwickelnden Iindustrie in China zu erfüllen. Seit...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: Li-Fi erstmals für das industrielle Internet der Dinge getestet

Mit einer Abschlusspräsentation im BMW Werk München wurde das BMBF-geförderte Projekt OWICELLS erfolgreich abgeschlossen. Dabei wurde eine Li-Fi Kommunikation zu einem mobilen Roboter in einer 5x5m² Fertigungszelle demonstriert, der produktionsübliche Vorgänge durchführt (Teile schweißen, umlegen und prüfen). Die robuste, optische Drahtlosübertragung beruht auf räumlicher Diversität, d.h. Daten werden von mehreren LEDs und mehreren Photodioden gleichzeitig gesendet und empfangen. Das System kann Daten mit mehr als 100 Mbit/s und fünf Millisekunden Latenz übertragen.

Moderne Produktionstechniken in der Automobilindustrie müssen flexibler werden, um sich an individuelle Kundenwünsche anpassen zu können. Forscher untersuchen...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: ALMA entdeckt Trio von Baby-Planeten rund um neugeborenen Stern

Neuartige Technik, um die jüngsten Planeten in unserer Galaxis zu finden

Zwei unabhängige Astronomenteams haben mit ALMA überzeugende Belege dafür gefunden, dass sich drei junge Planeten im Orbit um den Säuglingsstern HD 163296...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Künstliche Intelligenz – Schafft der Mensch seine Arbeit ab?

15.06.2018 | Veranstaltungen

Internationale Konferenz zur Asteroidenforschung in Garching

13.06.2018 | Veranstaltungen

Meteoriteneinschläge und Spektralfarben: HITS bei Explore Science 2018

11.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

EMAG auf der AMB: Hochproduktive Lösungen für die vernetzte Automotive-Produktion

15.06.2018 | Messenachrichten

AchemAsia 2019 in Shanghai

15.06.2018 | Messenachrichten

Dem Fettfinger zu Leibe rücken: Neuer Nanolack soll Antifingerprint-Oberflächen schaffen

15.06.2018 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics