Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie der Schnupfen in die Zelle kommt

20.06.2016

Viren schleusen ihre Erbsubstanz in unsere Zellen ein. Wie das funktioniert, lässt sich nun an der TU Wien mit einer neuen Kombination von Analysemethoden untersuchen.

Schnupfenviren verursachen uns Ärger, indem sie in unsere Zellen eindringen und dort die RNA aus ihrem Inneren in das Cytoplasma der infizierten Zelle transportieren. Erst dadurch können sie sich vermehren. Wie diese Ausschleusung der RNA aus dem Inneren des Virus im Detail abläuft, ist schwer zu untersuchen.


Das Messprinzip: Die RNA aus dem Virus wird mit molecular beacons markiert

An der TU Wien wurden nun eine Methode entwickelt, mit der man diesen Prozess analysieren kann. Sie entstand aus der Kombination zweier etablierter Verfahren – sogenannten „Molecular Beacons (molekulare Leuchtfeuer)“ und der Kapillarelektrophorese im Chip-Format. Die neue Methode wurde nun publiziert und der Artikeltitel ziert das Cover des Fachjournals „Analytical and Bioanalytical Chemistry“.

Mini-Fußball mit Erbsubstanz

Das Schnupfenvirus, das Prof. Günter Allmaier und sein Team vom Institut für Chemische Technologien und Analytik studierten, ist relativ einfach aufgebaut. Es sieht aus wie ein Nano-Fußball mit einem Durchmesser von ungefähr 30 Nanometern. Seine Schale besteht aus vier verschiedenen Proteinen, die jeweils 60-fach vorhanden sind, im Inneren verbirgt sich die RNA, auf der die Erbinformation des Virus gespeichert ist.

„Bestimmte äußere Bedingungen können das Virus dazu bringen, seine RNA nach außen freizusetzen“, erklärt Victor Weiss, PostDoc von Günter Allmaier. „In unseren Zellen wird das durch einen niedrigeren pH-Wert ausgelöst, man kann denselben Effekt auch erzielen, indem man die Temperatur für zehn Minuten auf 57°C erhöht.“ In diesem Fall organisieren sich die Proteine um, die Schale des Virus bekommt Löcher, durch eines von ihnen wird dann der RNA-Strang freigegeben.

Für viele medizinische Fragen ist es wichtig, diesen Mechanismus genau zu verstehen – zum Beispiel für die künftige Entwicklung von Medikamenten, die genau diesen RNA-Transfer verhindern. Die Dynamik dieses Vorgangs konnte bisher nicht direkt beobachtet werden. In den Labors der TU Wien wird dieser Prozess aber nun experimentell zugänglich gemacht.

Fluoreszierende Marker und Elektrophorese

Man verwendet sogenante „Molecular Beacons“ – das sind maßgeschneiderte RNA (oder DNA-) Moleküle mit zwei verschiedenen Enden. An einem Ende sitzt ein Fluorophor, der aufleuchtet, wenn man ihn mit Laserlicht einer bestimmten Wellenlänge bestrahlt, am anderen Ende ein „Quencher“, der genau dieses Aufleuchten verhindert. „Anfangs ist das Molekül zusammengeklappt, Fluorophor und Quencher befinden sich ganz nahe nebeneinander, dann ist die Fluoreszenz sehr gering“, erklärt Victor Weiss.

Die Molecular Beacons können allerdings an eine ganz bestimmte RNA-Sequenz andocken. Wenn das passiert, klappt das Molekül auseinander, Fluorophor und Quencher sind plötzlich weit voneinander entfernt, und wenn man das Molekül dann mit dem passenden Laserlicht bestrahlt, fluoresziert es.

Man kann diese Molecular Beacons also verwenden, um bestimmte RNA-Sequenzen nachzuweisen. Diese Technik wurde an der TU Wien mit einer anderen bewährten Technik kombiniert – der Kapillarelektrophorese. Dabei trennt man die Komponenten einer Probe nach ihrer elektrophoretischer Mobilität (Wanderungsgeschwindigkeit in einem elektrischen Feld).

Eine kleine Flüssigkeitsprobe wird in einem Chip-Kanal platziert, und dort wir ein elektrisches Feld angelegt, in dem die unterschiedlichen Nanopartikel auf charakteristische Weise unterschiedlich schnell wandern. Nach einer Trennstrecke von etwa eineinhalb Zentimetern trifft dann ein Laserstrahl auf die Partikel. Dort werden dann die leuchtenden Fluorophore des ausgeklappten Molecular Beacons gemessen, die an der Viren-RNA andocken konnten.

„Die unterschiedlichen Bestandteile der Probe kommen zu unterschiedlichen Zeitpunkten beim Laser an, erst dadurch kann man sichergehen, dass man genau misst, was man eigentlich messen möchte“, erklärt Günter Allmaier. „Damit können wir nun beispielsweise zeigen, welches Ende der RNA zuerst aus dem Virus austritt, und wie dieser Prozess genau abläuft.“

Im Prinzip lässt sich die Methode, die im Rahmen eines FWF Projektes gemeinsam mit der Forschungsgruppe Dieter Blaas (Medizinische Universität Wien) entwickelt wurde, auch auf alle anderen Viren anwenden. „Uns geht es um die Entwicklung der Methode, als Testobjekt ist das Schnupfenvirus geradezu ideal“, meint Allmaier. „Wir hoffen aber natürlich, dass sich diese Methode in der medizinischen Forschung etabliert. Dass sie großes Potenzial hat, haben wir nun gezeigt und zeigt sich auch in der Kooperation mit der Firma Agilent Technologies.“

Originalpublikation: Analytical and Bioanalytical Chemistry, doi:10.1007/s00216-016-9459-2

Rückfragehinweis:
Prof. Günter Allmaier
Institut für Chemische Technologien und Analytik
Technische Universität Wien
Getreidemarkt 9/164, A-1060 Wien
T: +43-1-58801-15160
guenter.allmaier@tuwien.ac.at

Aussender:
Dr. Florian Aigner
Büro für Öffentlichkeitsarbeit
Technische Universität Wien
Operngasse 11, 1040 Wien
T.: +43-1-58801-41027
florian.aigner@tuwien.ac.at

Weitere Informationen:

http://link.springer.com/article/10.1007%2Fs00216-016-9459-2 Originalpublikation

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Forscher finden Hinweise auf verknotete Chromosomen im Erbgut
20.10.2017 | Johannes Gutenberg-Universität Mainz

nachricht Aus der Moosfabrik
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Das Immunsystem in Extremsituationen

19.10.2017 | Veranstaltungen

Die jungen forschungsstarken Unis Europas tagen in Ulm - YERUN Tagung in Ulm

19.10.2017 | Veranstaltungen

Bauphysiktagung der TU Kaiserslautern befasst sich mit energieeffizienten Gebäuden

19.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Forscher finden Hinweise auf verknotete Chromosomen im Erbgut

20.10.2017 | Biowissenschaften Chemie

Saugmaschinen machen Waschwässer von Binnenschiffen sauberer

20.10.2017 | Ökologie Umwelt- Naturschutz

Strukturbiologieforschung in Berlin: DFG bewilligt Mittel für neue Hochleistungsmikroskope

20.10.2017 | Förderungen Preise