Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie der Schnupfen in die Zelle kommt

20.06.2016

Viren schleusen ihre Erbsubstanz in unsere Zellen ein. Wie das funktioniert, lässt sich nun an der TU Wien mit einer neuen Kombination von Analysemethoden untersuchen.

Schnupfenviren verursachen uns Ärger, indem sie in unsere Zellen eindringen und dort die RNA aus ihrem Inneren in das Cytoplasma der infizierten Zelle transportieren. Erst dadurch können sie sich vermehren. Wie diese Ausschleusung der RNA aus dem Inneren des Virus im Detail abläuft, ist schwer zu untersuchen.


Das Messprinzip: Die RNA aus dem Virus wird mit molecular beacons markiert

An der TU Wien wurden nun eine Methode entwickelt, mit der man diesen Prozess analysieren kann. Sie entstand aus der Kombination zweier etablierter Verfahren – sogenannten „Molecular Beacons (molekulare Leuchtfeuer)“ und der Kapillarelektrophorese im Chip-Format. Die neue Methode wurde nun publiziert und der Artikeltitel ziert das Cover des Fachjournals „Analytical and Bioanalytical Chemistry“.

Mini-Fußball mit Erbsubstanz

Das Schnupfenvirus, das Prof. Günter Allmaier und sein Team vom Institut für Chemische Technologien und Analytik studierten, ist relativ einfach aufgebaut. Es sieht aus wie ein Nano-Fußball mit einem Durchmesser von ungefähr 30 Nanometern. Seine Schale besteht aus vier verschiedenen Proteinen, die jeweils 60-fach vorhanden sind, im Inneren verbirgt sich die RNA, auf der die Erbinformation des Virus gespeichert ist.

„Bestimmte äußere Bedingungen können das Virus dazu bringen, seine RNA nach außen freizusetzen“, erklärt Victor Weiss, PostDoc von Günter Allmaier. „In unseren Zellen wird das durch einen niedrigeren pH-Wert ausgelöst, man kann denselben Effekt auch erzielen, indem man die Temperatur für zehn Minuten auf 57°C erhöht.“ In diesem Fall organisieren sich die Proteine um, die Schale des Virus bekommt Löcher, durch eines von ihnen wird dann der RNA-Strang freigegeben.

Für viele medizinische Fragen ist es wichtig, diesen Mechanismus genau zu verstehen – zum Beispiel für die künftige Entwicklung von Medikamenten, die genau diesen RNA-Transfer verhindern. Die Dynamik dieses Vorgangs konnte bisher nicht direkt beobachtet werden. In den Labors der TU Wien wird dieser Prozess aber nun experimentell zugänglich gemacht.

Fluoreszierende Marker und Elektrophorese

Man verwendet sogenante „Molecular Beacons“ – das sind maßgeschneiderte RNA (oder DNA-) Moleküle mit zwei verschiedenen Enden. An einem Ende sitzt ein Fluorophor, der aufleuchtet, wenn man ihn mit Laserlicht einer bestimmten Wellenlänge bestrahlt, am anderen Ende ein „Quencher“, der genau dieses Aufleuchten verhindert. „Anfangs ist das Molekül zusammengeklappt, Fluorophor und Quencher befinden sich ganz nahe nebeneinander, dann ist die Fluoreszenz sehr gering“, erklärt Victor Weiss.

Die Molecular Beacons können allerdings an eine ganz bestimmte RNA-Sequenz andocken. Wenn das passiert, klappt das Molekül auseinander, Fluorophor und Quencher sind plötzlich weit voneinander entfernt, und wenn man das Molekül dann mit dem passenden Laserlicht bestrahlt, fluoresziert es.

Man kann diese Molecular Beacons also verwenden, um bestimmte RNA-Sequenzen nachzuweisen. Diese Technik wurde an der TU Wien mit einer anderen bewährten Technik kombiniert – der Kapillarelektrophorese. Dabei trennt man die Komponenten einer Probe nach ihrer elektrophoretischer Mobilität (Wanderungsgeschwindigkeit in einem elektrischen Feld).

Eine kleine Flüssigkeitsprobe wird in einem Chip-Kanal platziert, und dort wir ein elektrisches Feld angelegt, in dem die unterschiedlichen Nanopartikel auf charakteristische Weise unterschiedlich schnell wandern. Nach einer Trennstrecke von etwa eineinhalb Zentimetern trifft dann ein Laserstrahl auf die Partikel. Dort werden dann die leuchtenden Fluorophore des ausgeklappten Molecular Beacons gemessen, die an der Viren-RNA andocken konnten.

„Die unterschiedlichen Bestandteile der Probe kommen zu unterschiedlichen Zeitpunkten beim Laser an, erst dadurch kann man sichergehen, dass man genau misst, was man eigentlich messen möchte“, erklärt Günter Allmaier. „Damit können wir nun beispielsweise zeigen, welches Ende der RNA zuerst aus dem Virus austritt, und wie dieser Prozess genau abläuft.“

Im Prinzip lässt sich die Methode, die im Rahmen eines FWF Projektes gemeinsam mit der Forschungsgruppe Dieter Blaas (Medizinische Universität Wien) entwickelt wurde, auch auf alle anderen Viren anwenden. „Uns geht es um die Entwicklung der Methode, als Testobjekt ist das Schnupfenvirus geradezu ideal“, meint Allmaier. „Wir hoffen aber natürlich, dass sich diese Methode in der medizinischen Forschung etabliert. Dass sie großes Potenzial hat, haben wir nun gezeigt und zeigt sich auch in der Kooperation mit der Firma Agilent Technologies.“

Originalpublikation: Analytical and Bioanalytical Chemistry, doi:10.1007/s00216-016-9459-2

Rückfragehinweis:
Prof. Günter Allmaier
Institut für Chemische Technologien und Analytik
Technische Universität Wien
Getreidemarkt 9/164, A-1060 Wien
T: +43-1-58801-15160
guenter.allmaier@tuwien.ac.at

Aussender:
Dr. Florian Aigner
Büro für Öffentlichkeitsarbeit
Technische Universität Wien
Operngasse 11, 1040 Wien
T.: +43-1-58801-41027
florian.aigner@tuwien.ac.at

Weitere Informationen:

http://link.springer.com/article/10.1007%2Fs00216-016-9459-2 Originalpublikation

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Poröse Salze für Brennstoffzellen
24.04.2018 | Gesellschaft Deutscher Chemiker e.V.

nachricht Adenoviren binden gezielt an Strukturen auf Tumorzellen
23.04.2018 | Eberhard Karls Universität Tübingen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Moleküle brillant beleuchtet

Physiker des Labors für Attosekundenphysik, der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik haben eine leistungsstarke Lichtquelle entwickelt, die ultrakurze Pulse über einen Großteil des mittleren Infrarot-Wellenlängenbereichs generiert. Die Wissenschaftler versprechen sich von dieser Technologie eine Vielzahl von Anwendungen, unter anderem im Bereich der Krebsfrüherkennung.

Moleküle sind die Grundelemente des Lebens. Auch wir Menschen bestehen aus ihnen. Sie steuern unseren Biorhythmus, zeigen aber auch an, wenn dieser erkrankt...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Metalle verbinden ohne Schweißen

Kieler Prototyp für neue Verbindungstechnik wird auf Hannover Messe präsentiert

Schweißen ist noch immer die Standardtechnik, um Metalle miteinander zu verbinden. Doch das aufwändige Verfahren unter hohen Temperaturen ist nicht überall...

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Fraunhofer eröffnet Community zur Entwicklung von Anwendungen und Technologien für die Industrie 4.0

23.04.2018 | Veranstaltungen

Mars Sample Return – Wann kommen die ersten Gesteinsproben vom Roten Planeten?

23.04.2018 | Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Netzspannung und Lastströme live und präzise im Blick

24.04.2018 | Energie und Elektrotechnik

Poröse Salze für Brennstoffzellen

24.04.2018 | Biowissenschaften Chemie

Bestände des invasiven Kalikokrebses reduzieren und heimische Arten schützen

24.04.2018 | Ökologie Umwelt- Naturschutz

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics