Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Daptomycin multiresistente Bakterien tötet

25.10.2016

Das Antibiotikum Daptomycin ist oft die letzte Waffe gegen multiresistente Bakterien. Unklar war bislang, wie genau das Medikament wirkt. Eine neue Studie unter Federführung der Universitäten Bonn und Amsterdam bringt nun Licht ins Dunkel. Demnach hemmt Daptomycin durch einen bislang unbekannten Mechanismus die Zellwand-Synthese der Erreger. Die Arbeit ist nun in der Fachzeitschrift PNAS erschienen.

Daptomycin ist ein so genanntes Reserve- oder Notfall-Antibiotikum: Es gilt oft als letzte Rettung gegen multiresistente Bakterien wie zum Beispiel MRSA-Keime. Seit mehr als zehn Jahren ist die Substanz in Deutschland inzwischen zugelassen. Zu der Art und Weise, wie sie Bakterien tötet, gab es aber bislang verschiedene Hypothesen. „Es ist absolut ungewöhnlich“, betont Prof. Dr. Tanja Schneider vom Institut für Pharmazeutische Mikrobiologie der Universität Bonn: „Bei allen anderen zugelassenen Antibiotika kennen wir den Wirkmechanismus; bei Daptomycin tappen wir dagegen selbst nach Jahrzehnten intensiver Forschung noch weitgehend im Dunkeln.“


Daptomycin-Moleküle (blau) schieben sich mit dem Schwanz voran zwischen die Membran-Lipide (grau bzw. rot). In der Folge löst sich ein wichtiges Enzym (grün) von der Innenseite der Membran.

© Grafik: AG Tanja Schneider/Uni Bonn

In dieses Dunkel bringen die Wissenschaftler mit ihrer Studie nun etwas Licht. Demnach hemmt Daptomycin mit einem trickreichen Mechanismus die Zellwand-Synthese der gefährlichen Erreger. An der Arbeit waren neben den Universitäten Bonn und Amsterdam auch die Ruhr-Universität Bochum, die Universität Newcastle und das Deutsche Zentrum für Infektionsforschung (DZIF) beteiligt.

Bakterien sind von einer Membran umgeben, die der Haut einer Seifenblase ähnelt. In ihr sind zahlreiche Proteine eingebettet, die wichtige Aufgaben in der Zelle übernehmen. An die Membran schließt sich nach außen die feste Zellwand an.

Die Membran selbst ist dagegen relativ flexibel. Sie besteht aus Lipiden, einer Substanzgruppe, zu der auch Fette zählen. In Membranen gibt es verschiedene Lipid-Typen. Einige von ihnen haben eine chemische Struktur, die sie sehr beweglich macht – wie leichtflüssiges Öl. Andere sind dagegen zäh wie erkaltetes Fett. In der Bakterienmembran wechseln sich flüssigere mit festeren Bereichen ab. Die Anordnung dieser Bereiche ändert sich ständig – die Membran ist also ein sehr dynamisches System.

Magnet in der Zellmembran

Daptomycin bringt diesen Aufbau nun gründlich durcheinander. Das Antibiotikum ähnelt einer Kaulquappe mit einem dicken Kopf und einem kurzen Schwanz. Dieser Schwanz taucht in die Außenseite der Bakterienmembran ein. Dazu muss sich der Kopf Platz verschaffen und die Lipide etwas zur Seite schieben. „Das funktioniert augenscheinlich nur an bestimmten Stellen, an denen die Membran ausreichend fluide ist“, erklärt Prof. Schneider.

Daptomycin-Moleküle haben zudem unter bestimmten Bedingungen die Tendenz, sich aneinanderzulagern. Diese Aggregate benötigen besonders große flüssige Membranbereiche. Zu diesem Zweck ziehen sie – ähnlich wie ein Magnet – weitere leicht bewegliche Lipide an sich heran. Dadurch kommt es zu gravierenden Störungen der Membranstruktur. Proteine, die normalerweise an der Innenseite des Lipid-Häutchens befestigt sind, können sich lösen und ihre Funktion verlieren. „Darunter sind auch Enzyme, die den Aufbau der Bakterien-Zellwand katalysieren“, erklären Schneiders Mitarbeiter Dr. Anna Müller und Dr. Fabian Grein. „Ohne diese Schutzhülle gehen die Erreger zugrunde.“

Neben dem nun gefundenen Mechanismus vermuten die Wissenschaftler noch weitere, die zur antibakteriellen Wirkung von Daptomycin beitragen. Diese aufzuklären, ist Thema aktueller Forschungsarbeiten. Den genauen Wirkungsmechanismus eines Antibiotikums im Detail zu verstehen, sei enorm wichtig. „So können wir beispielsweise besser abschätzen, mit welchen anderen Antibiotika sich der Wirkstoff sinnvoll kombinieren lässt oder wie groß das Risiko einer Resistenzbildung ist“, betont Tanja Schneider.

Momentan wird Daptomycin nur in Fällen eingesetzt, in denen andere Antibiotika versagen – die Mediziner wollen nicht riskieren, dass MRSA-Keime durch unbedachte Nutzung gegen den Wirkstoff unempfindlich werden. Diese Gefahr besteht durchaus: Schon jetzt gibt es Bakterienstämme, die selbst gegen diese schlagkräftige Waffe resistent sind.

Publikation: Anna Müller, Michaela Wenzel, Henrik Strahl, Fabian Grein, Terrens N. V. Saaki, Bastian Kohl, Tjalling Siersma, Julia E. Bandow, Hans-Georg Sahl, Tanja Schneider, Leendert W. Hamoen: Daptomycin inhibits cell envelope synthesis by interfering with fluid membrane microdomains; PNAS; DOI: 10.1073/pnas.1611173113

Kontakt für die Medien:

Prof. Dr. Tanja Schneider
Institut für Pharmazeutische Mikrobiologie der Universität Bonn
Deutsches Zentrum für Infektionsforschung (DZIF)
Tel. 0228/735688 oder 735266
E-Mail: tschneider@uni-bonn.de

Johannes Seiler | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-bonn.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wissenschaftliches Neuland: Die aufregende Liaison von Zucker und Proteinen
21.09.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Überleben auf der Schneeball-Erde
21.09.2017 | Max-Planck-Institut für Biogeochemie, Jena

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Granulare Materie blitzschnell im Bild

21.09.2017 | Verfahrenstechnologie

Hochpräzise Verschaltung in der Hirnrinde

21.09.2017 | Biowissenschaften Chemie

Überleben auf der Schneeball-Erde

21.09.2017 | Biowissenschaften Chemie