Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Blutgefässe veröden: Zellen verschmelzen mit sich selbst

20.04.2015

Zellen im Blutgefäßsystem von Wirbeltieren können mit sich selbst verschmelzen. Diesen Prozess, der auftritt, wenn ein Blutgefäß nicht mehr benötigt und zurückgebildet wird, hat das Forschungsteam von Prof. Markus Affolter am Biozentrum der Universität Basel erstmals auf zellulärer Ebene beschrieben. Die Ergebnisse der Studie sind im Fachjournal «PLoS Biology» veröffentlicht.

Blutgefäße bilden das Versorgungsnetzwerk des menschlichen Organismus. Sie versorgen ihn mit Sauerstoff und Nährstoffen bis in den letzten Winkel jedes Körperteils. Forschungsarbeiten über das Blutgefäßsystem konzentrierten sich bislang in erster Linie auf die Bildung eines solchen Netzwerkes.


Blutgefässsystem des Zebrafisches in der Veränderungsphase. Einige der schmalen, dünnen Gefässe bilden sich zurück, um das Netzwerk zu optimieren.

Biozentrum, Universität Basel

Die Forschungsgruppe von Prof. Markus Affolter am Biozentrum der Universität Basel hat nun die Rückbildung nicht mehr benötigter Blutgefäße beim Zebrafisch genauer untersucht und entdeckt, dass die Zellen fähig sind, ihre Membranränder mit sich selbst verschmelzen zu lassen. Dass Gefässzellen von Wirbeltieren diese Eigenschaft haben, war bislang unbekannt.

«Self-Fusion» erstmals im Wirbeltier beobachtet

Die Bildung von Blutgefäßen folgt einem komplizierten Architekturplan. «Der Plan für die Rückbildung ist auf den ersten Blick gleich, muss auf molekularer Ebene jedoch unterschiedlich sein», sagt Markus Affolter. Bei der Verödung eines Blutgefäßes wandern die meisten Zellen in die benachbarten, funktionellen Gefässe. Die letzte Zelle, die im sich zurückbildenden Gefäss bleibt, fusioniert mit sich selbst und schliesst das Gefäss ab. Bei dem als «Self-Fusion» bezeichneten Prozess breitet sich eine Zelle um das gesamte Gefäss aus.

Die dabei aufeinandertreffenden Membranränder dieser Zelle verschmelzen mit sich selbst und verschliessen so die Öffnung. So wird sichergestellt, dass bei der Verödung eines Gefässes kein Loch zurückbleibt, aus dem Blut austreten kann. Es ist das erste Mal, dass das Verschmelzen von Zellen mit sich selbst bei Wirbeltieren, zu denen auch der Mensch zählt, beobachtet werden konnte. «Bisher kannte man ein solches Verhalten von Zellen nur bei einfacheren Organismen wie dem Fadenwurm», erklärt Markus Affolter.

Hohe Plastizität durch «Self-Fusion»

Während der Ausbildung des Blutgefäßnetzwerkes bilden sich immer wieder auch Gefässe, die nur vorrübergehend benötigt werden. Wie bei einem stillgelegten Flussarm eines weit verzweigten Gewässernetzes, durchfliesst diese Gefässe kein frisches Blut mehr und der Organismus beginnt mit dem Abbau dieses Seitenarms. Auf diese Weise reguliert sich das Blutgefäßsystem von allein, optimiert seinen Blutfluss, indem überschüssige Gefässe, in denen sich der Blutdurchfluss und damit der Blutdruck verringern, zurückgebildet und deren Zellen recycelt werden.

«Dieser neu gefundene Prozess ist für das zelluläre Verständnis vom Auf- und Abbau von Blutgefäßen wichtig, da sich damit einmal mehr die unglaublich grosse Plastizität und Wandelbarkeit des Blutgefäßsystems erklären lässt», so Anna Lenard, Erstautorin der Publikation. Die Studie wurde am Zebrafisch durchgeführt, da sich in dem fast durchsichtigen Fisch die Blutgefäßentwicklung mittels moderner Mikroskopiertechniken am lebenden Tier beobachten lässt.

Bedeutung von «Self-Fusion» bei Krebs

«Wie die Zelle beim aufeinandertreffenden der Membranränder sich selbst erkennt, und dabei nur mit sich und nicht mit anderen, benachbarten Blutgefäßzellen fusioniert, weiss man bislang jedoch noch nicht», so Markus Affolter. Schon lange liegt der Verdacht nahe, dass jede einzelne Zelle eines Organismus einen eigenen Code hat.

«Dieser Prozess könnte diese Theorie teilweise bestätigen», meint Affolter. Mit seinem Team möchte er nun untersuchen, was beim «Self-Fusion»-Prozess in der Zelle genau passiert. Da Tumore für ihr Wachstum ein gut ausgebildetes Blutgefäßsytem benötigen, könnte ein besseres Verständnis über die Bildung und Rückbildung des Netzwerkes Möglichkeiten eröffnen, wie sich ein solches System manipulieren liesse.

Originalartikel:
Anna Lenard, Stephan Daetwyler, Charles Betz, Elin Ellertsdottir, Heinz-Georg Belting, Jan Huisken, Markus Affolter:
Endothelial Cell Self-fusion during Vascular Pruning.
PLoS Biology, published online 17 April 2015 | DOI: 10.1371/journal.pbio.1002126

Weiter Informationen:
Heike Sacher, Kommunikation Biozentrum, Universität Base, Tel. +41 61 267 14 49, E-Mail: heike.sacher@unibas.ch

Weitere Informationen:

https://www.unibas.ch/de/Aktuell/News/Uni-Research/Wie-Blutgef-sse-ver-den.html

Heike Sacher | Universität Basel

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Vielseitige Nanokugeln: Forscher bauen künstliche Zellkompartimente als molekulare Werkstatt
22.05.2018 | Technische Universität München

nachricht Designerzellen: Künstliches Enzym kann Genschalter betätigen
22.05.2018 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kosmische Ravioli und Spätzle

Die inneren Monde des Saturns sehen aus wie riesige Ravioli und Spätzle. Das enthüllten Bilder der Raumsonde Cassini. Nun konnten Forscher der Universität Bern erstmals zeigen, wie diese Monde entstanden sind. Die eigenartigen Formen sind eine natürliche Folge von Zusammenstössen zwischen kleinen Monden ähnlicher Grösse, wie Computersimulationen demonstrieren.

Als Martin Rubin, Astrophysiker an der Universität Bern, die Bilder der Saturnmonde Pan und Atlas im Internet sah, war er verblüfft. Die Nahaufnahmen der...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Raumschrott im Fokus

Das Astronomische Institut der Universität Bern (AIUB) hat sein Observatorium in Zimmerwald um zwei zusätzliche Kuppelbauten erweitert sowie eine Kuppel erneuert. Damit stehen nun sechs vollautomatisierte Teleskope zur Himmelsüberwachung zur Verfügung – insbesondere zur Detektion und Katalogisierung von Raumschrott. Unter dem Namen «Swiss Optical Ground Station and Geodynamics Observatory» erhält die Forschungsstation damit eine noch grössere internationale Bedeutung.

Am Nachmittag des 10. Februars 2009 stiess über Sibirien in einer Höhe von rund 800 Kilometern der aktive Telefoniesatellit Iridium 33 mit dem ausgedienten...

Im Focus: Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

Passt eine ultrakalte Wolke aus zehntausenden Rubidium-Atomen in ein einzelnes Riesenatom? Forscherinnen und Forschern am 5. Physikalischen Institut der Universität Stuttgart ist dies erstmals gelungen. Sie zeigten einen ganz neuen Ansatz, die Wechselwirkung von geladenen Kernen mit neutralen Atomen bei weitaus niedrigeren Temperaturen zu untersuchen, als es bisher möglich war. Dies könnte einen wichtigen Schritt darstellen, um in Zukunft quantenmechanische Effekte in der Atom-Ion Wechselwirkung zu studieren. Das renommierte Fachjournal Physical Review Letters und das populärwissenschaftliche Begleitjournal Physics berichteten darüber.*)

In dem Experiment regten die Forscherinnen und Forscher ein Elektron eines einzelnen Atoms in einem Bose-Einstein-Kondensat mit Laserstrahlen in einen riesigen...

Im Focus: Algorithmen für die Leberchirurgie – weltweit sicherer operieren

Die Leber durchlaufen vier komplex verwobene Gefäßsysteme. Die chirurgische Entfernung von Tumoren ist daher oft eine schwierige Aufgabe. Das Fraunhofer-Institut für Bildgestützte Medizin MEVIS hat Algorithmen entwickelt, die die Bilddaten von Patienten analysieren und chirurgische Risiken berechnen. Leberkrebsoperationen werden damit besser planbar und sicherer.

Jährlich erkranken weltweit 750.000 Menschen neu an Leberkrebs, viele weitere entwickeln Lebermetastasen aufgrund anderer Krebserkrankungen. Ein chirurgischer...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

48V im Fokus!

21.05.2018 | Veranstaltungen

„Data Science“ – Theorie und Anwendung: Internationale Tagung unter Leitung der Uni Paderborn

18.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Selbstleuchtende Pixel für eine neue Display-Generation

22.05.2018 | Messenachrichten

Die neue Achillesferse von Blutkrebs

22.05.2018 | Medizin Gesundheit

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungsnachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics