Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Blutgefässe veröden: Zellen verschmelzen mit sich selbst

20.04.2015

Zellen im Blutgefäßsystem von Wirbeltieren können mit sich selbst verschmelzen. Diesen Prozess, der auftritt, wenn ein Blutgefäß nicht mehr benötigt und zurückgebildet wird, hat das Forschungsteam von Prof. Markus Affolter am Biozentrum der Universität Basel erstmals auf zellulärer Ebene beschrieben. Die Ergebnisse der Studie sind im Fachjournal «PLoS Biology» veröffentlicht.

Blutgefäße bilden das Versorgungsnetzwerk des menschlichen Organismus. Sie versorgen ihn mit Sauerstoff und Nährstoffen bis in den letzten Winkel jedes Körperteils. Forschungsarbeiten über das Blutgefäßsystem konzentrierten sich bislang in erster Linie auf die Bildung eines solchen Netzwerkes.


Blutgefässsystem des Zebrafisches in der Veränderungsphase. Einige der schmalen, dünnen Gefässe bilden sich zurück, um das Netzwerk zu optimieren.

Biozentrum, Universität Basel

Die Forschungsgruppe von Prof. Markus Affolter am Biozentrum der Universität Basel hat nun die Rückbildung nicht mehr benötigter Blutgefäße beim Zebrafisch genauer untersucht und entdeckt, dass die Zellen fähig sind, ihre Membranränder mit sich selbst verschmelzen zu lassen. Dass Gefässzellen von Wirbeltieren diese Eigenschaft haben, war bislang unbekannt.

«Self-Fusion» erstmals im Wirbeltier beobachtet

Die Bildung von Blutgefäßen folgt einem komplizierten Architekturplan. «Der Plan für die Rückbildung ist auf den ersten Blick gleich, muss auf molekularer Ebene jedoch unterschiedlich sein», sagt Markus Affolter. Bei der Verödung eines Blutgefäßes wandern die meisten Zellen in die benachbarten, funktionellen Gefässe. Die letzte Zelle, die im sich zurückbildenden Gefäss bleibt, fusioniert mit sich selbst und schliesst das Gefäss ab. Bei dem als «Self-Fusion» bezeichneten Prozess breitet sich eine Zelle um das gesamte Gefäss aus.

Die dabei aufeinandertreffenden Membranränder dieser Zelle verschmelzen mit sich selbst und verschliessen so die Öffnung. So wird sichergestellt, dass bei der Verödung eines Gefässes kein Loch zurückbleibt, aus dem Blut austreten kann. Es ist das erste Mal, dass das Verschmelzen von Zellen mit sich selbst bei Wirbeltieren, zu denen auch der Mensch zählt, beobachtet werden konnte. «Bisher kannte man ein solches Verhalten von Zellen nur bei einfacheren Organismen wie dem Fadenwurm», erklärt Markus Affolter.

Hohe Plastizität durch «Self-Fusion»

Während der Ausbildung des Blutgefäßnetzwerkes bilden sich immer wieder auch Gefässe, die nur vorrübergehend benötigt werden. Wie bei einem stillgelegten Flussarm eines weit verzweigten Gewässernetzes, durchfliesst diese Gefässe kein frisches Blut mehr und der Organismus beginnt mit dem Abbau dieses Seitenarms. Auf diese Weise reguliert sich das Blutgefäßsystem von allein, optimiert seinen Blutfluss, indem überschüssige Gefässe, in denen sich der Blutdurchfluss und damit der Blutdruck verringern, zurückgebildet und deren Zellen recycelt werden.

«Dieser neu gefundene Prozess ist für das zelluläre Verständnis vom Auf- und Abbau von Blutgefäßen wichtig, da sich damit einmal mehr die unglaublich grosse Plastizität und Wandelbarkeit des Blutgefäßsystems erklären lässt», so Anna Lenard, Erstautorin der Publikation. Die Studie wurde am Zebrafisch durchgeführt, da sich in dem fast durchsichtigen Fisch die Blutgefäßentwicklung mittels moderner Mikroskopiertechniken am lebenden Tier beobachten lässt.

Bedeutung von «Self-Fusion» bei Krebs

«Wie die Zelle beim aufeinandertreffenden der Membranränder sich selbst erkennt, und dabei nur mit sich und nicht mit anderen, benachbarten Blutgefäßzellen fusioniert, weiss man bislang jedoch noch nicht», so Markus Affolter. Schon lange liegt der Verdacht nahe, dass jede einzelne Zelle eines Organismus einen eigenen Code hat.

«Dieser Prozess könnte diese Theorie teilweise bestätigen», meint Affolter. Mit seinem Team möchte er nun untersuchen, was beim «Self-Fusion»-Prozess in der Zelle genau passiert. Da Tumore für ihr Wachstum ein gut ausgebildetes Blutgefäßsytem benötigen, könnte ein besseres Verständnis über die Bildung und Rückbildung des Netzwerkes Möglichkeiten eröffnen, wie sich ein solches System manipulieren liesse.

Originalartikel:
Anna Lenard, Stephan Daetwyler, Charles Betz, Elin Ellertsdottir, Heinz-Georg Belting, Jan Huisken, Markus Affolter:
Endothelial Cell Self-fusion during Vascular Pruning.
PLoS Biology, published online 17 April 2015 | DOI: 10.1371/journal.pbio.1002126

Weiter Informationen:
Heike Sacher, Kommunikation Biozentrum, Universität Base, Tel. +41 61 267 14 49, E-Mail: heike.sacher@unibas.ch

Weitere Informationen:

https://www.unibas.ch/de/Aktuell/News/Uni-Research/Wie-Blutgef-sse-ver-den.html

Heike Sacher | Universität Basel

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Krebsforschung in der Schwerelosigkeit
18.12.2017 | Otto-von-Guericke-Universität Magdeburg

nachricht Von Alaska bis zum Amazonas: Pflanzenmerkmale erstmals kartiert
18.12.2017 | Max-Planck-Institut für Biogeochemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: „Carmenes“ findet ersten Planeten

Deutsch-spanisches Forscherteam entwirft, baut und nutzt modernen Spektrografen

Seit Januar 2016 nutzt ein deutsch-spanisches Forscherteam mit Beteiligung der Universität Göttingen den modernen Spektrografen „Carmenes“ für die Suche nach...

Im Focus: Fehlerfrei ins Quantencomputer-Zeitalter

Heute verfügbare Ionenfallen-Technologien eignen sich als Basis für den Bau von großen Quantencomputern. Das zeigen Untersuchungen eines internationalen Forscherteams, deren Ergebnisse nun in der Fachzeitschrift Physical Review X veröffentlicht wurden. Die Wissenschaftler haben für Ionenfallen maßgeschneiderte Protokolle entwickelt, mit denen auftretende Fehler jederzeit entdeckt und korrigiert werden können.

Damit die heute existierenden Prototypen von Quantencomputern ihr volles Potenzial entfalten, müssen sie erstens viel größer werden, d.h. über deutlich mehr...

Im Focus: Error-free into the Quantum Computer Age

A study carried out by an international team of researchers and published in the journal Physical Review X shows that ion-trap technologies available today are suitable for building large-scale quantum computers. The scientists introduce trapped-ion quantum error correction protocols that detect and correct processing errors.

In order to reach their full potential, today’s quantum computer prototypes have to meet specific criteria: First, they have to be made bigger, which means...

Im Focus: Search for planets with Carmenes successful

German and Spanish researchers plan, build and use modern spectrograph

Since 2016, German and Spanish researchers, among them scientists from the University of Göttingen, have been hunting for exoplanets with the “Carmenes”...

Im Focus: Immunsystem - Blutplättchen können mehr als bislang bekannt

LMU-Mediziner zeigen eine wichtige Funktion von Blutplättchen auf: Sie bewegen sich aktiv und interagieren mit Erregern.

Die aktive Rolle von Blutplättchen bei der Immunabwehr wurde bislang unterschätzt: Sie übernehmen mehr Funktionen als bekannt war. Das zeigt eine Studie von...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Neue Konfenzreihe in Berlin: Landscape 2018 - Ernährungssicherheit, Klimawandel, Nachhaltigkeit

18.12.2017 | Veranstaltungen

Call for Contributions: Tagung „Lehren und Lernen mit digitalen Medien“

15.12.2017 | Veranstaltungen

Die Stadt der Zukunft nachhaltig(er) gestalten: inter 3 stellt Projekte auf Konferenz vor

15.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Lipid-Nanodisks stabilisieren fehlgefaltete Proteine für Untersuchungen

18.12.2017 | Biowissenschaften Chemie

Von Alaska bis zum Amazonas: Pflanzenmerkmale erstmals kartiert

18.12.2017 | Biowissenschaften Chemie

Krebsforschung in der Schwerelosigkeit

18.12.2017 | Biowissenschaften Chemie